Skip to main content
Log in

Numerical Study on the Solid–Liquid Interface Evolution of Large-Scale Titanium Alloy Ingots During High Energy Consumption Electron Beam Cold Hearth Melting

  • Heat Transfer Utilization in Pyrometallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present paper, a three-dimensional thermal-fluid multi-physical model has been established to investigate the effect of energy consumption operations on the evolutionary tendency of the solid–liquid interface for large-scale Ti-6 wt.%Al-4 wt.%V (TC4) round (Φ260 mm and Φ620 mm)/slab (1050 mm × 220 mm) ingots produced by electron beam cold hearth melting. The results qualitatively revealed the evolutionary tendency of the solid–liquid interface in different casting conditions, indicating that the solid–liquid interface with a gentle casting speed at a low pouring temperature will generate symmetric solid–liquid interfaces which were slightly affected by the modification of the pouring temperature. With an increasing energy input resulting from the rising casting speed, the deformation of the solid–liquid interface near the inlet was increased. As a result, the risk of breaking out and the formation of a non-uniform microstructure in the Φ620-mm round ingots and slab ingots was greatly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\( A_{\text{mush}} \) :

Mushy zone constant

\( \beta \) :

Liquid fraction

\( c_{p} \) :

Specific heat (J/kg K)

\( g \) :

Acceleration due to gravity (m/s2)

\( H \) :

Enthalpy (J/kg)

\( h \) :

Sensible enthalpy (J/kg)

\( h_{\text{ref}} \) :

Reference enthalpy (J/kg)

\( \Delta H_{f} \) :

Pure solvent melting heat (J/kg)

\( k \) :

Thermal conductivity (K/m K)

L :

Characteristic length (m)

P :

Pressure (Pa)

\( \rho \) :

Density (kg/m3)

\( \overline{\overline{\tau }} \) :

Stress tensor (N/m2)

\( T_{\text{ref}} \) :

Reference temperature (K)

\( T \) :

Temperature (K)

t :

Time (s)

\( \vec{v} \) :

Cell velocity (m/s)

\( \vec{v}_{\text{p}} \) :

Pull velocity (m/s)

References

  1. G. Itoh, R. Kaibyshev, E.M. Taleff, M. Tikhonova, and E. Sato, Defect Diffus. Forum 385, 419 (2018).

    Article  Google Scholar 

  2. S. Ji, J. Duan, L. Yao, D.M. Maijer, S.L. Cockcroft, D. Fiore, and D.W. Tripp, Int. J. Heat Mass Transf. 119, 271 (2018).

    Article  Google Scholar 

  3. J.R. Wood, JOM 54, 56 (2002).

    Article  Google Scholar 

  4. Q. Liu, X. Li, and Y. Jiang, Mater. Sci. Technol. 34, 1649 (2018).

    Article  Google Scholar 

  5. L. Gao, H. Huang, Y. Zhang, H. Zhang, Z. Shi, Y. Jiang, and R. Zhou, JOM 70, 2934 (2018).

    Article  Google Scholar 

  6. L. Gao, X. Li, H. Huang, Y. Sui, H. Zhang, Z. Shi, K. Chattopadhyay, Y. Jiang, and R. Zhou, Int. J. Heat Mass Transf. 139, 764 (2019).

    Article  Google Scholar 

  7. L. Gao, H. Huang, C. Kratzsch, H. Zhang, K. Chattopadhyay, Y. Jiang, and R. Zhou, Int. J. Heat Mass Transf. 147, 118976 (2020).

    Article  Google Scholar 

  8. Z. Nie, R.A. Palghat, and Y. Hou, Int. J. Heat Mass Transf. 117, 1083 (2018).

    Article  Google Scholar 

  9. Z. Nie, J. Deng, Y. Zhou, S. Wen, and Y. Hou, Int. Commun. Heat Mass Transf. 80, 148 (2017).

    Article  Google Scholar 

  10. Z. Nie, Y. Hou, J. Deng, R.A. Palghat, S. Wen, and W. Ma, Appl. Therm. Eng. 125, 856 (2017).

    Article  Google Scholar 

  11. Z. Nie, Y. Zhou, J. Deng, S. Wen, and Y. Hou, Int. J. Heat Mass Transf. 1142, 111 (2017).

    Google Scholar 

  12. A.C. Powell, Transport phenomena in electron beam melting and evaporation. PhD thesis, Massachusetts Institute of Technology, Boston, MA (1997).

  13. L. Yao, D.M. Maijer, S.L. Cockcroft, D. Fiore, and D.W. Tripp, Int. J. Heat. Mass Transf. 126, 1123 (2018).

    Article  Google Scholar 

  14. J. Ou, S.L. Cockcroft, D.M. Maijer, L. Yao, C. Reilly, and A. Akhtar, Int. J. Heat Mass Transf. 86, 221 (2015).

    Article  Google Scholar 

  15. Q. Liu, X. Li, and Y. Jiang, Vacuum 141, 1 (2017).

    Article  Google Scholar 

  16. Q. Liu, X. Li, and Y. Jiang, J. Mater. Res. 32, 3175 (2017).

    Article  Google Scholar 

  17. X. Zhao, C. Reilly, L. Yao, D.M. Maijer, S.L. Cockcroft, and J. Zhu, Appl. Math. Model. 38, 3607 (2014).

    Article  Google Scholar 

  18. A.D. Brent, V.R. Voller, and K.J. Reid, Numer. Heat Transf. 13, 297 (1988).

    Article  Google Scholar 

  19. ANSYS Inc, ANSYS Fluent Theory Guide (Release 15.0, 2013). Accessed Nov 2013.

  20. J. Li, M. Wu, A. Ludwig, and A. Kharicha, Int. J. Heat Mass Transf. 72, 668 (2014).

    Article  Google Scholar 

  21. Z. Zhang, Modeling of al evaporation and Marangoni flow in electron beam button melting of Ti-6Al-4V. Masters thesis, The University of British Columbia (2013).

  22. S. Ghosh, K. McReynolds, J.E. Guyer, and D. Banerjee, Model. Simul. Mater. Sci. Eng. 26, 075001 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by China Postdoctoral Science Foundation No. 2018M633421, National Natural Science Foundation of China (Grant No. 51764052) and Innovative Research Team (in Science and Technology) in University of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yehua Jiang or Guo Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Huang, H., Jiang, Y. et al. Numerical Study on the Solid–Liquid Interface Evolution of Large-Scale Titanium Alloy Ingots During High Energy Consumption Electron Beam Cold Hearth Melting. JOM 72, 1953–1960 (2020). https://doi.org/10.1007/s11837-020-04089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04089-5

Navigation