Skip to main content
Log in

Prediction of Thermal Residual Stress and Microstructure in Direct Laser Metal Deposition via a Coupled Finite Element and Multiphase Field Framework

  • ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Direct laser metal deposition (DLMD) is a modern powder-fed additive manufacturing process, which builds up complex objects layer by layer, providing a potential capacity to produce key structural components specifically for the aerospace industry. The printing process is of a multidisciplinary nature, and has gained increasing attention in the areas of engineering mechanics, material science, control engineering and many other related fields. The quality control of the printed part depends on a large number of process parameters. The aim of this work, therefore, is to develop a coupled finite element and multiphase field framework, that provides an effective way to understand the quantitative relationship between the process parameters, temperature history, thermally-induced residual stresses and microstructures in the DLMD process. More specifically, the established multiscale framework is able to sequentially couple the heat transfer, metal melting/solidification, and stress analysis to simulate the macroscopic temperature distribution, thermal residual stresses and dendrite growth and solute segregation in a thin wall structure made of a binary nickel-copper alloy. The latest simulation technologies are used to model the process of progressive material deposition as well as the movement of the laser beam. It has been found that the high intensity laser introduced in DLMD can produce a complex thermal history and a significant level of thermal residual stresses and distortion. Microstructure predictions demonstrate the location-dependent morphology evolution, e.g., the dendrite spacing and the degree of solute segregation, attributed to the spatially variant temperature history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.L. Weber, V. Peña, and M.K. Micali, IDA Paper 5091, (2013).

  2. J. Ning and S. Liang, J. Manuf. Mater. Process. 2, 37 (2018).

    Google Scholar 

  3. J. Ning and S. Liang, Materials 12, 284 (2019).

    Article  Google Scholar 

  4. A.J. Pinkerton and L. Li, Proc. Inst. Mech. Eng. Part C 218, 531 (2004).

    Article  Google Scholar 

  5. A. Vasinonta, J.L. Beuth, and M. Griffith, J. Eng. Ind. 129, 101 (2006).

    Google Scholar 

  6. J.C. Heigel, P. Michaleris, and E.W. Reutzel, Addit. Manuf. 5, 9 (2015).

    Article  Google Scholar 

  7. R. Gardon and J.C. Akfirat, Int. J. Heat Mass Transfer 8, 1261 (1965).

    Article  Google Scholar 

  8. K.P. Perry, Proc. - Inst. Mech. Eng. 168, 775 (1954).

    Article  Google Scholar 

  9. A.F.A. Hoadley and M. Rappaz, Metall. Trans. B 23, 631 (1992).

    Article  Google Scholar 

  10. R. Gardon, and J. Cobonpu, Heat transfer between a flat plate and jets of air impinging on it, in International Development in Heat Transfer, Proceedings of Heat Transfer Conference (1962), p. 454.

  11. S. Ghosh and J. Choi, J. Laser Appl. 17, 144 (2005).

    Article  Google Scholar 

  12. Y. Fu, J. Michopoulos, and B. Gnanasekaran, Comput. Mater. Sci. 155, 457 (2018).

    Article  Google Scholar 

  13. Y. Fu, J.G. Michopoulos, and J.-H. Song, J. Comput. Sci. 20, 187 (2017).

    Article  MathSciNet  Google Scholar 

  14. J.H. Song, Y. Fu, T.Y. Kim, Y.C. Yoon, J.G. Michopoulos, and T. Rabczuk, Int. J. Mech. Mater. Des. 14, 491 (2018).

    Article  Google Scholar 

  15. A. Almasi, A. Beel, T.Y. Kim, J.G. Michopoulos, and J.H. Song, J. Eng. Mech. Div. Am. Soc. Civ. Eng. 145, 0401908282 (2019).

    Article  Google Scholar 

  16. G.R. Liu, and S.S. Quek, The Finite Element Method: A Practical Cours, 2nd edn. (Elsevier (BH), 2014), p. 464.

  17. J. Eiken, B. Böttger, and I. Steinbach, Phys. Rev. E 73, 066122 (2006).

    Article  Google Scholar 

  18. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina, CIRP Ann. 65, 737 (2016).

    Article  Google Scholar 

  19. M.K. Thompson, A. Stolfi, and M. Mischkot, CIRP J. Manuf. Sci. Technol. 12, 25 (2016).

    Article  Google Scholar 

  20. G. Marion, G. Cailletaud, C. Colin, and M. Mazière, A finite element model for the simulation of direct metal deposition, in ICALEO (2014).

  21. Abaqus, Dassault Systèmes Simulia Corp., (2019).

  22. G.R. Liu and N.T. Trung, Smoothed Finite Element Methods (Boca Raton: CRC, 2010).

    Google Scholar 

  23. S. Kim, W. Kim, T. Suzuki, and M. Ode, J. Cryst. Growth 261, 135 (2004).

    Article  Google Scholar 

  24. S.G. Kim, W.T. Kim, and T. Suzuki, Phys. Rev. E 60, 7186 (1999).

    Article  Google Scholar 

  25. J.J. Valencia, and P.N. Quested, Thermophysical properties, in Casting, (New York: ASM International, 2008), p. 468–481.

  26. R.E. Pawel and E.E. Stansbury, J. Phys. Chem. Solids 26, 607 (1965).

    Article  Google Scholar 

  27. C.Y. Ho, M.W. Ackerman, K.Y. Wu, S.G. Oh, and T.N. Havill, J. Phys. Chem. Ref. Data7(3), 959 (1978).

    Article  Google Scholar 

  28. G.R. Liu, Comp. Struct. 40, 313 (1997).

    Article  Google Scholar 

  29. D. Jeong and J. Kim, Phys. A 442, 510 (2016).

    Article  MathSciNet  Google Scholar 

  30. J. Li, J. Wang, and G. Yang, J. Cryst. Growth 309, 65 (2007).

    Article  Google Scholar 

  31. M. Asta, J.J. Hoyt, and A. Karma, Phys. Rev. B 66, 100101 (2002).

    Article  Google Scholar 

  32. J.A. Warren and W.J. Boettinger, Acta Metall. Mater. 43, 689 (1995).

    Article  Google Scholar 

  33. J.A. Warren, T. Pusztai, L. Környei, and L. Gránásy, Phys. Rev. B 79, 014204 (2009).

    Article  Google Scholar 

  34. T. Takaki, M. Ohno, Y. Shibuta, S. Sakane, T. Shimokawabe, and T. Aoki, J. Cryst. Growth, 442, 14 (2016).

    Article  Google Scholar 

  35. J.C. Heigel, Chapter 8—thermo-mechanical modeling of thin wall builds using powder fed directed energy deposition, in Thermo-Mechanical Modeling of Additive Manufacturing, eds. by M. Gouge and P. Michaleris (London, Butterworth-Heinemann, 2018), p. 137–151.

  36. M. Tonks, D. Gaston, P. Millett, D. Andrs, and P. Talbot, Comput. Mater. Sci. 51, 20 (2012).

    Article  Google Scholar 

  37. D. Schwen, L. Aagesen, J. Peterson, and M. Tonks, Comput. Mater. Sci. 132 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Fu or G. R. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Gnanasekaran, B., Fu, Y. et al. Prediction of Thermal Residual Stress and Microstructure in Direct Laser Metal Deposition via a Coupled Finite Element and Multiphase Field Framework. JOM 72, 496–508 (2020). https://doi.org/10.1007/s11837-019-03922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03922-w

Navigation