Skip to main content
Log in

Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process

  • ICME-Based Design and Optimization of Materials for Additive Manufacturing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Powder bed fusion processes have been a focus of research in recent years. Computational models of this process have been extensively investigated. In most cases, the distribution of heat intensity over the powder bed during the laser–powder interaction is assumed to follow a Gaussian beam pattern. However, the heat distribution over the surface is a complicated process that depends on several factors such as beam quality factor, laser wavelength, etc. and must be considered to present the laser–material interaction in a way that represents the actual beam. This work presents a process in which a non-Gaussian laser beam model is used to model the temperature profile, bead geometry, and elemental evaporation in the powder bed process. The results are compared against those of a Gaussian beam model and also an experiment using Inconel 718 alloy. The model offers good predictions of the temperature, bead shape, and concentration of alloying elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Ladani, J. Romano, W. Brindley, and S. Burlatsky, Addit. Manuf. 14, 13 (2017).

    Article  Google Scholar 

  2. F. Ahsan, J. Razmi, and L. Ladani, Adv. Manuf. (2018). https://doi.org/10.1115/IMECE2018-86566.

    Article  Google Scholar 

  3. J. Romano, L. Ladani, and M. Sadowski, JOM 68, 967 (2016).

    Article  Google Scholar 

  4. R. Andreotta, L. Ladani, and W. Brindley, Finite Elem. Anal. Des. 135, 36 (2017).

    Article  Google Scholar 

  5. M. Sadowski, L. Ladani, W. Brindley, and J. Romano, Addit. Manuf. 11, 60 (2016).

    Article  Google Scholar 

  6. F. Lopez, P. Witherell, and B. Lane, J. Mech. Des. 138, 114502 (2016).

    Article  Google Scholar 

  7. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  8. Z. Xiang, M. Yin, Z. Deng, X. Mei, and G. Yin, J. Manuf. Sci. Eng. 138, 081002 (2016).

    Article  Google Scholar 

  9. V. Manvatkar, A. De, and T. DebRoy, Mater. Sci. Technol. 31, 924 (2015).

    Article  Google Scholar 

  10. L. Ladani, F. Ahsan, in TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, San antonio, TX, US, March 1014 (Springer, Cham, 2019), p. 319.

  11. I.A. Roberts, C.J. Wang, R. Esterlein, M. Stanford, and D.J. Mynors, Int. J. Mach. Tools Manuf. 49, 916 (2009).

    Article  Google Scholar 

  12. L. Dong, A. Makradi, S. Ahzi, and Y. Remond, J. Mater. Process. Technol. 209, 700 (2009).

    Article  Google Scholar 

  13. P. Michaleris, Finite Elem. Anal. Des. 86, 51 (2014).

    Google Scholar 

  14. Y.S. Lee and W. Zhang, Addit. Manuf. 12, 178 (2016).

    Article  Google Scholar 

  15. J. Horak, D. Heunoske, M. Lueck, J. Osterholz, and M. Wickert, J. Laser Appl. 27, S28003 (2015).

    Article  Google Scholar 

  16. A. Raghavan, H.L. Wei, T.A. Palmer, and T. DebRoy, J. Laser Appl. 25, 052006 (2013).

    Article  Google Scholar 

  17. A. Foroozmehr, M. Badrossamay, and E. Foroozmehr, JMADE 89, 255 (2016).

    Google Scholar 

  18. G. Fu, D.Z. Zhang, A.N. He, Z. Mao, and K. Zhang, Materials (Basel) 11, 765 (2018).

    Article  Google Scholar 

  19. D.S. Nagesh and G.L. Datta, J. Mater. Process. Technol. 123, 303 (2002).

    Article  Google Scholar 

  20. C.H. Fu, Y.B. Guo, in 25th Annual International Solid Freeform Fabrication Symposium, Austin, TX, US, 46 August, 2014, p. 1129–1144.

  21. T. Mukherjee, J.S. Zuback, A. De, and T. DebRoy, Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  22. P.A.A. Khan and T. Debroy, Metall. Trans. B 15, 641 (1984).

    Article  Google Scholar 

  23. W.-B. Li, H. Engström, J. Powell, Z. Tan, and C. Magnusson, Lasers Eng. 5, 175 (1996).

    Google Scholar 

  24. J. Tuovinen and I.E.E.E. Trans, Antennas Propagat. 39, 391 (1992).

    Article  Google Scholar 

  25. Gaussian beam optics, (CVI melles Griot 2009) http://experimentationlab.berkeley.edu/sites/default/files/MOT/Gaussian-Beam-Optics.pdf.

  26. ISO, Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios. https://www.iso.org/obp/ui/#iso:std:33626:en (2015).

  27. S. Sumin Sih and J.W. Barlow, Part. Sci. Technol. 22, 291 (2004).

    Article  Google Scholar 

  28. D.R. Atthey, J. Fluid Mech. 98, 787 (1980).

    Article  MathSciNet  Google Scholar 

  29. COMSOL, What is the Marangoni effect? https://www.comsol.com/multiphysics/marangoni-effect (2015).

  30. COMSOL, Two-phase flow modeling guidelines—1239—knowledge base. https://www.comsol.com/support/knowledgebase/1239/.

  31. K.C. Mills, Recommended Values of Thermophysical Properties for Selected Commercial Alloys (Cambridge: Woodhead, 2002).

    Book  Google Scholar 

  32. R.F. Brooks, A.P. Day, R.J.L. Andon, L.A. Chapman, K.C. Mills, and P.N. Quested, High. Temp. High. Press. 33, 73 (2001).

    Article  Google Scholar 

  33. M. Jeandin, D. Kechemair, C. Sainte-Catherine, L. Sabatier, and J.-P. Ricaud, Le J. Phys. IV 01, 151 (1991).

    Google Scholar 

  34. T. Debroy and S.A. David, Rev. Mod. Phys. 67, 85 (1995).

    Article  Google Scholar 

  35. C.B. Alcock, Can. Metall. Q. 23, 309 (1984).

    Article  Google Scholar 

  36. B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, and K. Chou, Virtual Phys. Prototyp. 13, 8 (2018).

    Article  Google Scholar 

  37. Techstreet, F3055-14a, ASTM: Standard Specification for Additive Manufacturing Nickel Alloy (UNS N07718) with Powder Bed Fusion (ASTM International 2014) https://www.techstreet.com/standards/astm-f3055-14a.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiyaz Ahsan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, F., Ladani, L. Temperature Profile, Bead Geometry, and Elemental Evaporation in Laser Powder Bed Fusion Additive Manufacturing Process. JOM 72, 429–439 (2020). https://doi.org/10.1007/s11837-019-03872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03872-3

Navigation