Skip to main content
Log in

Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcification Roasting and Sodium Carbonate Leaching

  • Rare Metal Recovery from Secondary Resources
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The leaching process of vanadium from the calcification-roasted vanadium slag by sodium carbonate was researched. The effect of the main parameters on the sodium carbonate leaching process was investigated, and a kinetics analysis for the process using a new shrinking core model is presented. The results indicate that the leaching rate of vanadium significantly depends on the leaching temperature. Under the conditions of 6% CaO additive content in the roasted samples, 10:1 ml g−1 liquid–solid ratio, 80 g L−1 Na2CO3, and 30 min at 90°C, the leaching rate of vanadium is 86.64%. The clean and efficient utilization of vanadium slag can be achieved by the calcification roasting and sodium carbonate leaching process. Scanning electron microscopy/energy dispersive x-ray spectroscopy analysis shows that the vanadium slag can be effectively leached by sodium carbonate with few impurities drawn into the solution. The leaching kinetics of this process shows that the interfacial transfer and diffusion across the product layer affect the leaching at the same time. Moreover, the calculated activation energy of the leaching process is 40.93 kJ/mol, and the reaction order of the sodium carbonate concentration is 0.49.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi, Miner. Eng. 16, 793 (2003).

    Article  Google Scholar 

  2. G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and W.G. Zhang, JOM 68, 577 (2016).

    Article  Google Scholar 

  3. G.Q. Zhang, T.A. Zhang, G.Z. Lü, Y. Zhang, Y. Liu, and Z.L. Liu, Int. J. Min. Met. Mater. 22, 21 (2015).

    Article  Google Scholar 

  4. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, Hydrometallrugy 109, 116 (2011).

    Article  Google Scholar 

  5. L. Jia, Y.M. Zhang, T. Liu, J. Huang, and S.X. Bao, J. Clean. Prod. 22, 21 (2015).

    Google Scholar 

  6. M.Y. Wang, X.Y. Xiang, L.P. Zhang, and L.S. Xiao, Rare Met. 27, 112 (2008).

    Article  Google Scholar 

  7. Z.H. Sun, Ironsteelvanad. Titan. 33, 1 (2012).

    Google Scholar 

  8. D.S. He, Q.M. Feng, G.F. Zhang, L.M. Ou, and Y.P. Lu, Miner. Eng. 20, 1184 (2007).

    Article  Google Scholar 

  9. X.S. Li and B. Xie, Int. J. Miner. Metall. Mater. 19, 595 (2012).

    Article  Google Scholar 

  10. X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Trans. Nonferrous Met. Soc. China 21, 1860 (2011).

    Article  Google Scholar 

  11. S.M.J. Mirazimi, F. Rashchi, and M. Saba, Sep. Purif. Technol. 116, 175 (2013).

    Article  Google Scholar 

  12. S.Y. Zhao, Research on Calcified Technology of Vanadium Extraction from Vanadium Slag (Boston: Northeast. Univ., 2012), pp. 8–10.

    Google Scholar 

  13. M.Y. Wang, L.S. Xiao, Q.G. Li, X.W. Wang, and X.Y. Xiang, Rare Met. 28, 1 (2009).

    Article  Google Scholar 

  14. H.L. Zhao, G.Q. Zhang, G.Z. Lyu, and T.A. Zhang, J. Northeastern Univ. (Nat. Sci.) 35, 1288 (2014).

    Google Scholar 

  15. P.H. Ye, X.W. Wang, M.Y. Wang, Y.Y. Fan, and X.Y. Xiang, Hydrometallurgy 2012, 108 (2012).

    Article  Google Scholar 

  16. X.B. Zhu, Y.M. Zhang, J. Huang, T. Liu, and Y. Wang, Int. J. Miner. Process 21, 114 (2012).

    Google Scholar 

  17. Y. Zhang, T.A. Zhang, G.Z. Lv, G.Q. Zhang, Y. Liu, and W.G. Zhang, Hydrometallurgy 166, 87 (2016).

    Article  Google Scholar 

  18. Y. Zhang, T.A. Zhang, D. Dreisinger, W.H. Zhou, F. Xie, G.Z. Lv, and W.G. Zhang, Sep. Purif. Technol. 190, 123 (2018).

    Article  Google Scholar 

  19. Y.L. Zhao, Y.M. Zhang, T. Liu, T.J. Chen, Y. Bian, and S.X. Bao, Int. J. Miner. Process. 121, 1 (2013).

    Article  Google Scholar 

  20. H.Y. Li, K. Wang, W.H. Hua, Z. Yang, W. Zhou, and B. Xie, Hydrometallurgy 160, 18 (2016).

    Article  Google Scholar 

  21. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie, Int. J. Miner. Process. 133, 105 (2014).

    Article  Google Scholar 

  22. J.H. Zhang, W. Zhang, Y.X. Yang, L. Zhang, and L. Zhang, J. Northeast. Univ.(Nat. Sci.) 35, 831 (2014).

    Google Scholar 

  23. W.C. Song, H. Li, F.X. Zhu, K. Li, and Q. Zheng, Trans. Nonferrous Met. Soc. China 24, 2687 (2014).

    Article  Google Scholar 

  24. X.Y. Zou, Q.J. Peng, Y.Z. Ouyang, and R.G. Tian, Chin. J. Process Eng. 1, 189 (2001).

    Google Scholar 

  25. S.X. Xia, R. Lin, X. Cui, and J. Shan, Int. J. Hydrogen Energy 41, 11380 (2016).

    Article  Google Scholar 

  26. L. Wang, T.A. Zhang, G.Z. Lv, Z.H. Dou, W.G. Zhang, J.J. Zhang, L.P. Niu, and Y. Liu, Miner. Eng. 130, 85 (2019).

    Article  Google Scholar 

  27. G.Q. Zhang, T.A. Zhang, and G.Z. Lv, JOM 68, 577 (2015).

    Article  Google Scholar 

  28. G.Q. Zhang, D. Luo, C. Deng, L. Lv, and B. Liang, J. Alloys Compd. 742, 504 (2018).

    Article  Google Scholar 

  29. Y.K. Huang, Z.H. Dou, and T.A. Zhang, Hydrometallurgy 173, 15 (2017).

    Article  Google Scholar 

  30. R.J. Ma, Principle on Hydrometallurgy (Beijing: Metallurgical Industry Press, 2007), pp. 321–352. in Chinese.

    Google Scholar 

  31. C.F. Dickinson and G.R. Heal, Thermochim. Acta 340–341, 89 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financial supported by the National Natural Science Foundation of China (Nos. 51874078, U1710257, 51874094), State Key Laboratory of Pressure Hydrometallurgical Technology of Associated Nonferrous Metal Resources (YY2016006), Fundamental Research Funds for the Central Universities of China (Nos. N182505038, N140203005, N140204015), Shenyang Science and Technology Project (17-500-8-01, Z18-5-022), Science and Technology Leading Talents Training Plan (2017HA012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingan Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Zhang, T., Zhang, G. et al. Process and Kinetic Assessment of Vanadium Extraction from Vanadium Slag Using Calcification Roasting and Sodium Carbonate Leaching. JOM 71, 4600–4607 (2019). https://doi.org/10.1007/s11837-019-03672-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03672-9

Navigation