Skip to main content
Log in

Recycling Utilization of Zinc-Bearing Metallurgical Dust by Reductive Sintering: Reaction Behavior of Zinc Oxide

  • Recycling Methods for Industrial Metals and Minerals
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A process is being developed to recycle zinc-bearing metallurgical dust by reductive sintering. In the present work, the reaction behavior of zinc and iron oxides was studied in different conditions in CO–CO2 atmosphere, to understand the processes involved and determine the optimal conditions. The results showed that dezincification started to become significant when the coke addition was 9.0 wt.% of the amount of raw material, the corresponding CO content in the gases being 20 vol.%. Iron oxide played an important role in the reduction of ZnO: when the CO content was less than 20 vol.%, ZnO and Fe3O4 reacted to generate ZnFe2O4, CO2 being the oxidizer that promoted the conversion of Fe2+ to Fe3+. Increasing the temperature was also conducive to the generation of ZnFe2O4. The effect of iron oxide on the ZnO reduction gradually weakened when the CO content was increased above 20 vol.%. To realize reduction of ZnO and increase the removal rate of zinc, the atmosphere and temperature should be controlled in the thermodynamic stability region of FeO and Zn, where zinc vaporizes and is removed in elemental form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Xie, Y. Guo, T. Jiang, F. Chen, and L. Yang, 8th International Symposium on High-Temperature Metallurgical Processing (Springer, 2017), pp. 485–493.

  2. Z. Peng, D. Gregurek, C. Wenzl, and J.F. White, JOM 68, 2313–2315 (2016).

    Article  Google Scholar 

  3. J. Han, W. Liu, W. Qin, F. Jiao, D. Wang, and C. Liang, JOM 68, 1–8 (2016).

    Article  Google Scholar 

  4. S. Wang, Y. Guo, L. Yang, G. Fu, F. Zheng, F. Chen, L. Yang, and T. Jiang, Powder Technol. 332, 188–196 (2018).

    Article  Google Scholar 

  5. C. Lanzerstorfer, B. Bamberger-Strassmayr, and K. Pilz, ISIJ Int. 55, 758–764 (2015).

    Article  Google Scholar 

  6. Y. Zhang, Z. Su, Y. Zhou, G. Li, and T. Jiang, Int. J. Miner. Process. 124, 15–19 (2013).

    Article  Google Scholar 

  7. E.G. Donskov, V.P. Lyalyuk, and A.D. Donskov, Steel Transl. 44, 209–214 (2014).

    Article  Google Scholar 

  8. J. Antrekowitsch, G. Graller-Kettler, B. Matl, and A. Pestalozzi, JOM 57, 43–46 (2005).

    Article  Google Scholar 

  9. X. Yang, M. Chu, F. Shen, and Z. Zhang, Acta Metall. Sin. (Engl. Lett.), 22, 454-460 (2009).

  10. L. Xia, R. Mao, J. Zhang, X. Xu, M. Wei, and F. Yang, Int. J. Miner. Met. Mater 22, 122–131 (2015).

    Article  Google Scholar 

  11. T. Havlík, B.E.S. Vidor, A.M. Bernardes, I.A. Schneider, and A. Miskufová, J. Hazard. Mater. 135, 311–318 (2006).

    Article  Google Scholar 

  12. J. Han, W. Liu, D. Wang, F. Jiao, T. Zhang, and W. Qin, Metall. Trans. B 47, 2400–2410 (2016).

    Article  Google Scholar 

  13. R. Dimitrov and I. Bonev, Thermochim. Acta 106, 9–25 (1986).

    Article  Google Scholar 

  14. J. Han, W. Liu, W. Qin, B. Peng, K. Yang, and Y. Zheng, J. Ind. Eng. Chem. 22, 272–279 (2015).

    Article  Google Scholar 

  15. Z. Su, Y. Zhang, B. Liu, M. Lu, G. Li, and T. Jiang, JOM 69, 2364–2372 (2017).

    Article  Google Scholar 

  16. B. Peng, N. Peng, X. Min, H. Liu, Y. Li, D. Chen, and K. Xue, JOM 67, 1988–1996 (2015).

    Article  Google Scholar 

  17. J. Han, W. Liu, W. Qin, F. Jiao, and D. Wang, 7th International Symposium on High-Temperature Metallurgical Processing (Springer, 2016), pp. 543–550.

  18. G. Li, Z. You, Y. Zhang, M. Rao, P. Wen, Y. Guo, and T. Jiang, JOM 66, 1701–1710 (2014).

    Article  Google Scholar 

  19. T. Chun and D. Zhu, Metall. Trans. B 46, 1–4 (2015).

    Article  Google Scholar 

  20. M. Gan, Z. Ji, X. Fan, X. Chen, Y. Zhou, G. Wang, Y. Tian, and T. Jiang, J. Hazard. Mater. 353, 381–392 (2018).

    Article  Google Scholar 

  21. M. Nakano, T. Okada, H. Hasegawa, and M. Sakakibara, ISIJ Int. 40, 238–243 (2017).

    Article  Google Scholar 

  22. Y. Mochizuki, N. Tsubouchi, and T. Akiyama, Fuel Process. Technol. 138, 704–713 (2015).

    Article  Google Scholar 

  23. H. Yabe and Y. Takamoto, ISIJ Int. 53, 1625–1632 (2013).

    Article  Google Scholar 

  24. M. Gan, X. Fan, W. Lv, X. Chen, Z. Ji, T. Jiang, Z. Yu, and Y. Zhou, Powder Technol. 301, 478–485 (2016).

    Article  Google Scholar 

  25. J. Fu, T. Jiang, and D. Zhu, Sintering and Pelletizing, 1st ed. (Changsha: Central South University Press, 1996), pp. 33–35. (in Chinese).

    Google Scholar 

  26. ISO 9035: 1989, Iron ores, determination of acid-soluble iron (II) content; titrimetric method.

  27. ISO 2597: 1: 2006, Iron ores, determination of total iron content-titrimetric method after tin (II) chloride reduction.

  28. T. Yamashita and P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008).

    Article  Google Scholar 

  29. Z. Wang, B. Peng, L. Zhang, Z. Zhao, D. Liu, N. Peng, D. Wang, Y. He, Y. Liang, and H. Liu, JOM 70, 539–546 (2018).

    Article  Google Scholar 

Download references

Acknowledgement

The research was financially supported by the National Natural Science Foundation of China (Nos. U1760107, U1660206), Hunan Provincial Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, and Hunan Provincial Innovation Foundation for Postgraduate (CX2016B054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 274 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, W., Gan, M., Fan, X. et al. Recycling Utilization of Zinc-Bearing Metallurgical Dust by Reductive Sintering: Reaction Behavior of Zinc Oxide. JOM 71, 3173–3180 (2019). https://doi.org/10.1007/s11837-019-03645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03645-y

Navigation