Skip to main content
Log in

Effects of Recycled Powder on Solidification Defects, Microstructure, and Corrosion Properties of DMLS Fabricated AlSi10Mg

  • Solidification Defects in Additive Manufactured Materials
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 26 June 2019

This article has been updated

Abstract

This study examines the impacts of using recycled powder on solidification defects, microstructures, and the resultant corrosion properties of direct metal laser sintered AlSi10Mg alloy. Microstructural analysis confirmed that using recycled powder in the fabrication of AlSi10Mg leads to (1) an increased volume fraction of internal porosities and solidification micro-cracks, and (2) more coarsening of the interdendritic eutectic-Si network particularly along the melt pool boundaries, which were correlated to the larger size and irregular shape of the recycled powders compared to the virgin powders, leading to the reduced thermal conductivity of the recycled powders. To investigate the impacts of the above-mentioned microstructural changes on the corrosion performance of the alloy, anodic polarization testing and electrochemical impedance spectroscopy in aerated 3.5 wt.% NaCl solution were performed. The results confirmed a slight degradation of the corrosion properties of the recycled-powder fabricated samples, ascribed to further coarsening of Si-network along their melt pool boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 26 June 2019

    The original version of this article was updated to correct an errant space in AlSi10Mg throughout the text.

References

  1. H. Asgari, C. Baxter, K. Hosseinkhani, and M. Mohammadi, Mater. Sci. Eng. A 707, 148 (2017).

    Article  Google Scholar 

  2. E.O. Olakanmi, J. Mater. Process. Technol. 213, 1387 (2013).

    Article  Google Scholar 

  3. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  4. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, and N.M. Everitt, J. Mater. Process. Technol. 230, 88 (2016).

    Article  Google Scholar 

  5. A.H. Maamoun, M. Elbestawi, G.K. Dosbaeva, and S.C. Veldhuis, Addit. Manuf. 21, 234 (2018).

    Article  Google Scholar 

  6. L.C. Ardila, F. Garciandia, J.B. González-Díaz, P. Álvarez, A. Echeverria, M.M. Petite, R. Deffley, and J. Ochoa, Phys. Procedia 56, 99 (2014).

    Article  Google Scholar 

  7. G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, and J.D. Sherwood, J. Pharm. Sci. 91, 2103 (2002).

    Article  Google Scholar 

  8. A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).

    Article  Google Scholar 

  9. K. Abd-Elghany and D.L. Bourell, Rapid Prototyp. J. 18, 420 (2012).

    Article  Google Scholar 

  10. R.I. Revilla, J. Liang, S. Godet, and I. De Graeve, J. Electrochem. Soc. 164, C27 (2017).

    Article  Google Scholar 

  11. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, E.P. Ambrosio, F. Calignano, D. Manfredi, M. Pavese, and P. Fino, Electrochim. Acta 206, 346 (2016).

    Article  Google Scholar 

  12. P. Fathi, M. Mohammadi, X. Duan, and A.M. Nasiri, J. Mater. Process. Technol. 259, 1 (2018).

    Article  Google Scholar 

  13. M. Rafieazad, M. Mohammadi, and A. Nasiri, Addit. Manuf. 28, 107 (2019).

    Article  Google Scholar 

  14. P. Fathi, M. Mohammadi, X. Duan, and A. Nasiri, JOM 1, 1 (2019).

    Google Scholar 

  15. M. Tang, P.C. Pistorius, S. Narra, and J.L. Beuth, JOM 68, 960 (2016).

    Article  Google Scholar 

  16. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, and T.B. Sercombe, Acta Mater. 95, 74 (2015).

    Article  Google Scholar 

  17. T. Rubben, R.I. Revilla, and I. De Graeve, J. Electrochem. Soc. 166, C42 (2019).

    Article  Google Scholar 

  18. B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, and H. Li, Corros. Sci. 137, 176 (2018).

    Article  Google Scholar 

  19. M. Cabrini, S. Lorenzi, T. Pastore, S. Pellegrini, D. Manfredi, P. Fino, S. Biamino, and C. Badini, J. Mater. Process. Technol. 231, 326 (2016).

    Article  Google Scholar 

  20. M. Cabrini, S. Lorenzi, T. Pastore, C. Testa, D. Manfredi, G. Cattano, and F. Calignano, Surf. Interface Anal. (n.d.).

  21. T. Rubben, R.I. Revilla, and I. De Graeve, Corros. Sci 147, 406 (2018).

    Article  Google Scholar 

  22. R.I. Revilla, D. Verkens, G. Couturiaux, L. Malet, L. Thijs, S. Godet, and I. De Graeve, J. Electrochem. Soc. 164, C1027 (2017).

    Article  Google Scholar 

  23. M. Cabrini, F. Calignano, P. Fino, S. Lorenzi, M. Lorusso, D. Manfredi, C. Testa, and T. Pastore, Materials 11, 1051 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of Natural Sciences and Engineering Research Council of Canada (NSERC) [Grant Number RGPIN-2017-04368] for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rafieazad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafieazad, M., Chatterjee, A. & Nasiri, A.M. Effects of Recycled Powder on Solidification Defects, Microstructure, and Corrosion Properties of DMLS Fabricated AlSi10Mg. JOM 71, 3241–3252 (2019). https://doi.org/10.1007/s11837-019-03552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03552-2

Navigation