Skip to main content
Log in

Effect of Si on the Microstructure and Oxidation Resistance of Ti-Mo Alloys

  • Design, Development, and Manufacturing of Refractory Metals & Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ti-Mo alloys with various Si alloying additions were prepared by reaction synthesis with Ti powders, Mo powders and Si powders as raw materials. The effect of Si alloying on the microstructure, phase composition and oxidation resistance at 873 K and 973 K was investigated. The results show that the porosity of all the alloys was less than 0.4% and that the oxidation resistance was influenced by the Si content. The Ti-18Mo alloy exhibited a thinner oxidized layer thickness and lower average oxidation rate than the alloys with Si when they were oxidized at 873 K. The oxidized layer thickness and average oxidation rate of the alloys with Si oxidized at 873 K and 973 K increased with increasing Si content. However, the Ti-18Mo alloy oxidized at 973 K with a thin oxidized layer had a larger average oxidation rate than that of the other alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys, 1st ed. (Weinheim: Wiley-VCH, 2003), pp. 1–3.

    Book  Google Scholar 

  2. L.J. Xu, Y.Y. Chen, Z.G. Liu, and F.T. Kong, J. Alloys Compd. 453, 320 (2008).

    Article  Google Scholar 

  3. N. Somsanith, T.S.N.S. Narayanan, Y.K. Kim, I.S. Park, T.S. Bae, and M.H. Lee, Appl. Surf. Sci. 356, 1117 (2015).

    Article  Google Scholar 

  4. Y.F. Zheng, T. Alam, R. Banerjee, S. Banerjee, and H.L. Fraser, Scr. Mater. 152, 150 (2018).

    Article  Google Scholar 

  5. C.L. Li, Y.Z. Zhan, and W.P. Jiang, Mater. Des. 34, 479 (2012).

    Article  Google Scholar 

  6. J. Wu, G.M. Zhu, P.Z. Feng, X.G. Zhou, X.H. Wang, and F. Akhtar, Mater. Res. 18, 806 (2015).

    Article  Google Scholar 

  7. C. Ciszak, I. Popa, J.M. Brossard, D. Monceau, and S. Chevalier, Oxid. Met. 87, 729 (2017).

    Article  Google Scholar 

  8. J.J. Dai, J.Y. Zhu, C.Z. Chen, and F. Weng, J. Alloys Compd. 685, 784 (2016).

    Article  Google Scholar 

  9. S. Tkachenko, O. Datskevich, K. Dvořák, Z. Spotz, L. Kulak, and L. Čelko, J. Alloys Compd. 694, 1098 (2017).

    Article  Google Scholar 

  10. Y. Yang, T. Kitashima, T. Hara, and S. Iwasaki, Corros. Sci. 133, 61 (2018).

    Article  Google Scholar 

  11. C.Y. Wang, F.W. Yuan, Y.C. Hung, Y.W. Su, and H.Y. Tuan, J. Alloys Compd. 735, 2373 (2018).

    Article  Google Scholar 

  12. T.T. Zhang, X.S. Yang, K.S. Miao, D.Y. Li, S. Chen, X.P. Cui, M. Huang, G.H. Fan, and L. Geng, Mater. Sci. Eng. A 713, 28 (2018).

    Article  Google Scholar 

  13. Y.Y. Zhang, Y.G. Li, and C.G. Bai, Ceram. Int. 43, 6250 (2017).

    Article  Google Scholar 

  14. A.J. Heron and G.B. Schaffer, Mater. Sci. Eng. A 352, 105 (2003).

    Article  Google Scholar 

  15. W.J. Boettinger, J.H. Perepezko, and P.S. Frankwicz, Mater. Sci. Eng. A 155, 33 (1992).

    Article  Google Scholar 

  16. K. Yanagihara, T. Maruyama, and K. Nagata, Intermetallics 3, 243 (1995).

    Article  Google Scholar 

  17. K. Yanagihara, T. Maruyama, and K. Nagata, Intermetallics 4, S133 (1996).

    Article  Google Scholar 

  18. J.M. Oh, B.K. Lee, W. Kim, C.Y. Suh, H. Kwon, J.W. Lim, and K.M. Roh, Met. Mater. Int. 21, 521 (2015).

    Article  Google Scholar 

  19. Z. Tarzimoghadam, S. Sandlöbes, K.G. Pradeep, and D. Raabe, Acta Mater. 97, 291 (2015).

    Article  Google Scholar 

  20. M. Bulanova, S. Firstov, I. Gornaya, and D. Miracle, J. Alloys Compd. 384, 106 (2004).

    Article  Google Scholar 

  21. H. Okamoto, J. Phase Equilib. Diffus. 32, 176 (2011).

    Article  Google Scholar 

  22. O. Banakh, L. Snizhko, T. Journot, P.A. Gay, C. Csefalvay, O. Kalinichenko, O. Girin, L. Marger, and S. Durual, Metals 8, 370 (2018).

    Article  Google Scholar 

  23. J.K. Yoon, G.H. Kim, J.H. Han, I.J. Shon, J.M. Doh, and K.T. Hong, Surf. Coat. Technol. 200, 2537 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Natural Science Foundation of Jiangsu Province (No. BK20181448), National Natural Science Foundation of China (No. 51801073), Natural Science Research of Jiangsu Higher Education Institutions of China (No. 17KJB430009) and Senior Talent Foundation of Jiangsu University (No. 15JDG150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, J., Wang, Y., Zhou, Y. et al. Effect of Si on the Microstructure and Oxidation Resistance of Ti-Mo Alloys. JOM 72, 354–360 (2020). https://doi.org/10.1007/s11837-019-03495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03495-8

Navigation