Skip to main content
Log in

Quench Sensitivity of a 7A46 Aluminum Alloy

  • Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The quench sensitivity of a 7A46 aluminum alloy is studied by an interrupted quench method. The temperature–time–property (TTP) curves for the electrical conductivity and hardness are determined by measuring the as-quenched electrical conductivity and as-aged hardness, respectively. The TTP curves for the electrical conductivity and hardness all show that the nose temperature is 295°C and that the temperature zone with quench sensitivity and a fast phase transformation ranges from 265°C to 325°C. Transmission electron microscopy (TEM) images show that Al3Zr particles and grain boundaries are preferred nucleation sites for coarse η phases. With the extension of the isothermal holding time at 295°C, the size and density of these coarse η phases increase, resulting in a decreasing density of GP zones and η′ phases after aging treatment, and the precipitate-free zones (PFZ) become wide. To obtain good mechanical properties of the alloy and reduce residual stress, the cooling rate should be controlled at 1°C/s in the quench-sensitive zone and appropriately reduced outside the quench-sensitive zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Kumar, C. Poletti, and H.P. Degischer, Mater. Sci. Eng. A 561, 362 (2013).

    Article  Google Scholar 

  2. T. Xiao, Y. Deng, L. Ye, H. Lin, C. Shan, and P. Qian, Mater. Sci. Eng. A 675, 280 (2016).

    Article  Google Scholar 

  3. H. Wu, S.P. Wen, H. Huang, B.L. Li, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie, Mater. Sci. Eng. A 689, 313 (2017).

    Article  Google Scholar 

  4. X. Huang, Q. Pan, B. Li, Z. Liu, Z. Huang, and Z. Yin, J. Alloy. Compd. 650, 805 (2015).

    Article  Google Scholar 

  5. Y. Zhang, Y. Yi, S. Huang, F. Dong, and H. Wang, J. Alloy. Compd. 728, 1239 (2017).

    Article  Google Scholar 

  6. H. Wang, Y. Yi, and S. Huang, J. Alloy. Compd. 690, 446 (2017).

    Article  Google Scholar 

  7. L. Lin, Z. Liu, S. Bai, P. Ying, and X. Wang, Mater. Des. 86, 679 (2015).

    Article  Google Scholar 

  8. M. Tiryakioğlu, J.S. Robinson, and P.D. Eason, Mater. Sci. Eng. A 618, 22 (2014).

    Article  Google Scholar 

  9. Y.-C. Tzeng, C.-T. Wu, and S.-L. Lee, Mater. Lett. 161, 340 (2015).

    Article  Google Scholar 

  10. L. Lin, Z. Liu, S. Bai, Y. Zhou, W. Liu, and Q. Lv, Mater. Sci. Eng. A 682, 640 (2017).

    Article  Google Scholar 

  11. S.-L. Li, Z.-Q. Huang, W.-P. Chen, Z.-M. Liu, and W.-J. Qi, Trans. Nonferrous Met. Soc. China 23, 46 (2013).

    Article  Google Scholar 

  12. M. Tiryakioğlu and R.T. Shuey, Mater. Sci. Eng. A 527, 5033 (2010).

    Article  Google Scholar 

  13. J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska, and R.C. Wimpory, Mater. Charact. 65, 73 (2012).

    Article  Google Scholar 

  14. B. Nie, P. Liu, and T. Zhou, Mater. Sci. Eng. A 667, 106 (2016).

    Article  Google Scholar 

  15. S.D. Liu, X.M. Zhang, M.A. Chen, and J.H. You, Mater. Charact. 59, 53 (2008).

    Article  Google Scholar 

  16. Y.-L. Zheng, C.-B. Li, S.-D. Liu, Y.-L. Deng, and X.-M. Zhang, Trans. Nonferrous Met. Soc. China 24, 2275 (2014).

    Article  Google Scholar 

  17. K. Strobel, M.D.H. Lay, M.A. Easton, L. Sweet, S. Zhu, N.C. Parson, and A.J. Hill, Mater. Charact. 111, 43 (2016).

    Article  Google Scholar 

  18. C.-B. Li, S.-Q. Han, S.-D. Liu, Y.-L. Deng, and X.-M. Zhang, Trans. Nonferrous Met. Soc. China 26, 2276 (2016).

    Article  Google Scholar 

  19. S. Liu, C. Li, Y. Deng, and X. Zhang, Mater. Chem. Phys. 167, 320 (2015).

    Article  Google Scholar 

  20. M. Tiryakioğlu and R.T. Shuey, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41, 2984 (2010).

    Article  Google Scholar 

  21. M.J. Starink and S.C. Wang, Acta Mater. 51, 5131 (2003).

    Article  Google Scholar 

  22. M.A. Salazar-Guapuriche, Y.Y. Zhao, A. Pitman, and A. Greene, Mater. Sci. Forum 519–521, 853 (2006).

    Article  Google Scholar 

  23. B.C. Shang, Z.M. Yin, G. Wang, B. Liu, and Z.Q. Huang, Mater. Des. 32, 3818 (2011).

    Article  Google Scholar 

  24. R.J. Flynn and J.S. Robinson, J. Mater. Process. Technol. 153–154, 674 (2004).

    Article  Google Scholar 

  25. J.W. Evancho and J.T. Staley, Metall. Trans. 5, 43 (1974).

    Google Scholar 

  26. F. Jiang, J. Huang, L. Tang, F. Wang, Q. Xiao, and Z. Yin, JOM (2018). https://doi.org/10.1007/s11837-018-3153-0.

    Google Scholar 

  27. P. Archambault and D. Godard, Scr. Mater. 42, 675 (2000).

    Article  Google Scholar 

  28. C. Li, S. Wang, D. Zhang, S. Liu, Z. Shan, and X. Zhang, J. Alloy. Compd. 688, 456 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Major Project of Hunan Province (2016GK1004) and Guangdong Province (2016B090931001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Pan, Q., Li, H. et al. Quench Sensitivity of a 7A46 Aluminum Alloy. JOM 71, 2054–2062 (2019). https://doi.org/10.1007/s11837-019-03421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03421-y

Navigation