Skip to main content
Log in

Preparing a Solid Filament for Use in Additive Manufacturing of Metals

  • Additive Manufacturing: Validation and Control
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) or three-dimensional (3D) printing has now become one of the significant green manufacturing methods for use in many sectors of industry. Among numerous additive manufacturing methods that can produce geometrically complex components by adding material in consecutive layers, the most prevalent 3D printing method uses polymeric filaments as feedstock. Meanwhile, metal additive manufacturing requires complex technologies such as selective laser melting of the powder, being the most common metal 3D printing today. This study deals with the development of a metallic filament for use in a novel metal AM process, and the advantages of applying metal wires as a 3D printer input material. The aim is to describe how to achieve a readily printable metal filament that could be used in desktop metal printers. An investigation was conducted on the raw material preparation, design considerations, and microstructural evolution. However, it is very difficult to control such deposition of molten metal in a layer-wise manner. Extrusion of metal alloys in semisolid state is a good candidate process that could provide good deposition characteristics for metal wires. The results of this work show that semisolid deposition of a metal wire represents an affordable additive manufacturing technique. This study illustrates that, by designing an effective thermomechanical procedure, metallic filaments with the desired extrudability could be produced. The effect of process control on the rheological properties of the filament was also investigated. Finally, the desired filament microstructure was characterized to ensure a successful deposition process. The study of the mechanical properties of the filament and deposited beads yielded the desirable values, in turn confirming the success of the process to build a fully dense metallic part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.W. Simpson, C.B. Williams, and M. Hripko, Addit. Manuf. 13, 166 (2017).

    Article  Google Scholar 

  2. H. Bikas, P. Stavropoulos, and G. Chryssolouris, Int. J. Adv. Manuf. Technol. 83, 389 (2016).

    Article  Google Scholar 

  3. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  4. H. Lee, C.H.J. Lim, M.J. Low, N. Tham, V.M. Murukeshan, and Y.-J. Kim, Int. J. Precis. Eng. Manuf.-Green Technol. 4, 307 (2017).

    Article  Google Scholar 

  5. B. Baufeld, E. Brandl, and O.V. Biest, J. Mater. Process. Technol. 211, 1146 (2011).

    Article  Google Scholar 

  6. D. Ding, Z. Pan, D. Cuiuri, and H. Li, Int. J. Adv. Manuf. Technol. 81, 465 (2015).

    Article  Google Scholar 

  7. H. Geng, J. Li, J. Xiong, X. Lin, and F. Zhang, J. Mater. Process. Technol. 243, 40 (2017).

    Article  Google Scholar 

  8. W.J. Sames, F. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  9. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis, Mater. Des. 89, 559 (2016).

    Article  Google Scholar 

  10. Z.Y. Chua, I.H. Ahn, and S.K. Moon, Int. J. Precis. Eng. Manuf.-Green Technol. 4, 235 (2017).

    Article  Google Scholar 

  11. D.-G. Ahn, Int. J. Precis. Eng. Manuf.-Green Technol. 3, 381 (2016).

    Article  Google Scholar 

  12. A. Jabbari and K. Abrinia, Int. J. Adv. Manuf. Technol. 94, 3819 (2018).

    Article  Google Scholar 

  13. A. Jabbari and K. Abrinia, U.S. Patent Appl. No. 15898,836 (2018).

  14. S. Nafisi and R. Ghomashchi, Semi-Solid Metal (SSM) Technologies: Semi-Solid Processing of Aluminum Alloys (Berlin: Springer, 2016), pp. 9–11.

    Book  Google Scholar 

  15. M. Mohammed, M.Z. Omar, M. Salleh, K. Alhawari, and P. Kapranos, Sci. World J. 2013, 752175 (2013).

    Google Scholar 

  16. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja, and F. Martina, CIRP Ann. 65, 737 (2016).

    Article  Google Scholar 

  17. M. Flemings, Metall. Sci. Technol. 18, 2000 (2013).

    Google Scholar 

  18. T. Liu, P. Ward, H.V. Atkinson, and D. Kirkwood, Metall. Mater. Trans. A 34, 409 (2003).

    Article  Google Scholar 

  19. Z. Fan, Int. Mater. Rev. 47, 49 (2002).

    Article  Google Scholar 

  20. H.V. Atkinson, Alloys for Semi-Solid Processing. Solid State Phenomena (Frankfurt: Trans Tech Publications, 2013), p. 16.

    Google Scholar 

  21. D. Kirkwood, Int. Mater. Rev. 39, 173 (1994).

    Article  Google Scholar 

  22. E. Tzimas and A. Zavaliangos, Mater. Sci. Eng. A 289, 228 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Abrinia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbari, A., Abrinia, K. Preparing a Solid Filament for Use in Additive Manufacturing of Metals. JOM 71, 1088–1094 (2019). https://doi.org/10.1007/s11837-018-3282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3282-5

Navigation