Skip to main content
Log in

Formation of Multiple Microstructures During the Reduction of Ironsand

  • Metallurgical Kinetics
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ironsand is a type of titanic-ferrous solution ore. As most ironsands come from rapidly cooled lava, raw ironsand particles consist of complicated distributions of elements and a variety of Ti–Fe solid solution phases. In this study, samples of raw and pre-oxidized ironsands were reduced by hydrogen at 900°C for different time intervals. The formation of multiple microstructures of ironsand during the reduction process were investigated. For raw ironsand, a three-layer core structure, an incompletely reduced core structure, and a lump/net structure appeared in order with the reduction procedure. However, for pre-oxidized ironsand, the unit cells of major phases of ironsand shrink, leading to the formation of microcracks during the oxidation pretreatment. These cracks in turn trigger unordered reduction structures, significantly accelerating the reaction kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.I. Pearce, C.M.B. Henderson, N.D. Telling, R.A.D. Pattrick, J.M. Charnock, V.S. Coker, E. Arenholz, F. Tuna, and G. van der Laan, Am. Miner. 95, 425 (2010).

    Article  Google Scholar 

  2. Z. Wang, D. Pinson, S. Chew, H. Rogers, B.J. Monaghan, M.I. Pownceby, N.A.S. Webster, and G.Q. Zhang, Metall. Mater. Trans. B 47, 330 (2016).

    Article  Google Scholar 

  3. R. Zboril, M. Mashlan, and D. Petridis, Chem. Mater. 14, 969 (2002).

    Article  Google Scholar 

  4. S.M. Jung, Metall. Mater. Trans. B 46, 1162 (2015).

    Article  Google Scholar 

  5. J.A. Bowles, M.J. Jackson, T.S. Berquo, P.A. Solheid, and J.S. Gee, Nat. Commun. 4, 1916 (2013).

    Article  Google Scholar 

  6. F. Bosi, U. Halenius, and H. Skogby, Am. Miner. 94, 181 (2009).

    Article  Google Scholar 

  7. T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Metall. Mater. Trans. B 44, 252 (2013).

    Article  Google Scholar 

  8. S. Todd and E. King, J. Am. Chem. Soc. 75, 4547 (1953).

    Article  Google Scholar 

  9. G.L. Schwebel, D. Filippou, G. Hudon, M. Tworkowski, A. Gipperich, and W. Krumm, Appl. Energy 113, 1902 (2014).

    Article  Google Scholar 

  10. C.S. Kucukkaragoz and R.H. Eric, Miner. Eng. 19, 334 (2006).

    Article  Google Scholar 

  11. Z.Y. Wang, J.L. Zhang, J.F. Ma, and K.X. Mao, ISIJ Int. 57, 443 (2017).

    Article  Google Scholar 

  12. J.B. Zhang, G.Y. Zhang, Q.S. Zhu, C. Lei, Z.H. Xie, and H.Z. Li, Metall. Mater. Trans. B 45, 914 (2014).

    Article  Google Scholar 

  13. J. Wright, N. Z. J. Geol. Geophys 7, 424 (1964).

    Article  Google Scholar 

  14. J. Wright and J. Lovering, Miner. Mag. 35, 604 (1965).

    Google Scholar 

  15. H.B. Mattsson, L. Caricchi, B.S.G. Almqvist, M.J. Caddick, S.A. Bosshard, G. Hetenyi, and A.M. Hirt, Nat. Commun. 2, 299 (2011).

    Article  Google Scholar 

  16. L.V. de Groot, K. Fabian, I.A. Bakelaar, and M.J. Dekkers, Nat. Commun. 5, 4548 (2014).

    Article  Google Scholar 

  17. E. Cruz-Sanchez, J.F. Alvarez-Castro, J.A. Ramirez-Picado, and J.A. Matutes-Aquino, J. Alloys Compd. 369, 265 (2004).

    Article  Google Scholar 

  18. E. Park and O. Ostrovski, ISIJ Int. 43, 1316 (2003).

    Article  Google Scholar 

  19. E. Park and O. Ostrovski, ISIJ Int. 44, 999 (2004).

    Article  Google Scholar 

  20. R.J. Longbottom, O. Ostrovski, and E. Park, ISIJ Int. 46, 641 (2006).

    Article  Google Scholar 

  21. R.J. Longbottom, O. Ostrovski, J.Q. Zhang, and D. Young, Metall. Mater. Trans. B 38, 175 (2007).

    Article  Google Scholar 

  22. H.Y. Sun, X.J. Dong, X.F. She, Q.G. Xue, and J.S. Wang, ISIJ Int. 53, 564 (2013).

    Article  Google Scholar 

  23. Z.Y. Wang, J.L. Zhang, X.D. Xing, Z.J. Liu, Y.P. Zhang, X.L. Liu, and Y.R. Liu, JOM 68, 656 (2016).

    Article  Google Scholar 

  24. Z.Y. Wang, J.L. Zhang, K.X. Jiao, Z.J. Liu, and M. Barati, J. Alloys Compd. 729, 874 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (51604209). Zhenyang Wang also gratefully acknowledges the assistance from the members of the Sustainable Materials Processing (SMP) research group at the University of Toronto and the Laboratory of Advanced Ironmaking at the University of Science and Technology Beijing during the joint research program funded by China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, J., Liu, Z. et al. Formation of Multiple Microstructures During the Reduction of Ironsand. JOM 71, 1776–1784 (2019). https://doi.org/10.1007/s11837-018-3279-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3279-0

Navigation