Skip to main content
Log in

Effect of Initial Surface Features on Laser Polishing of Co-Cr-Mo Alloy Made by Powder-Bed Fusion

  • Solid Freeform Fabrication
  • Published:
JOM Aims and scope Submit manuscript

Abstract

One of the challenges regarding widespread use of parts created by the powder-bed fusion process is their high surface roughness, which necessitates some type of postbuild finishing process. Laser polishing (i.e., remelting), which uses surface-tension-driven flow to reduce the roughness of irradiated metallic surfaces, is one such potential finishing process. This work examines the effect that surface features on the as-built part have on the performance of continuous-wave laser remelting of Co-Cr-Mo alloy (Celsit 21-P, Stellite 21 equivalent) samples produced by powder-bed fusion manufacturing. This is accomplished by comparison of three-dimensional surface measurements before and after laser remelting using focus-variation microscopy. Engineering models used to simulate the surface profile as a result of laser remelting are also presented. The results from this work provide insight into the fundamental physics occurring during laser remelting on parts made by powder-bed fusion and will aid parameter selection for surface consolidation and smoothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, Mater. Today 21, 22 (2018).

    Article  Google Scholar 

  2. K.S. Chan, M. Koike, R.L. Mason, and T. Okabe, Metall. Mater. Trans. A 44, 1010 (2013).

    Article  Google Scholar 

  3. G. Strano, L. Hao, R.M. Everson, and K.E. Evans, J. Mater. Process. Technol. 213, 589 (2013).

    Article  Google Scholar 

  4. A. Townsend, N. Senin, L. Blunt, R.K. Leach, and J.S. Taylor, Precis. Eng. 46, 34 (2016).

    Article  Google Scholar 

  5. A. Thompson, N. Senin, C. Giusca, and R. Leach, CIRP Ann. 66, 543 (2017).

    Article  Google Scholar 

  6. D.A. Hollander et al., Biomaterials 27, 955 (2006).

    Article  Google Scholar 

  7. G. Pyka et al., Adv. Eng. Mater. 14, 363 (2017).

    Article  Google Scholar 

  8. E. Łyczkowska, P. Szymczyk, B. Dybała, and E. Chlebus, Arch. Civ. Mech. Eng. 14, 586 (2014).

    Article  Google Scholar 

  9. A. Lamikiz, J.A. Sánchez, L. de Lacalle, L. Norberto, D. del Pozo, and J.M. Etayo, Mater. Sci. Forum 526, 217 (2006).

    Article  Google Scholar 

  10. J.A. Ramos-Grez and D.L. Bourell, Int. J. Mater. Prod. Technol. 21, 297 (2004).

    Article  Google Scholar 

  11. A. Lamikiz, J.A. Sánchez, L.N. López de Lacalle, and J.L. Arana, Int. J. Mach. Tools Manuf. 47, 2040 (2007).

    Article  Google Scholar 

  12. J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck, Part and material properties in selective laser melting of metals, in Proceedings of the 16th International Symposium on Electromachining, pp. 1–12 (2010).

  13. B. Rosa, P. Mognol, and J. Hascoët, J. Laser Appl. 27, S29102 (2015).

    Article  Google Scholar 

  14. B. Rosa, P. Mognol, and J.-Y. Hascoët, Rapid Prototyp. J. 22, 956 (2016).

    Article  Google Scholar 

  15. J. Schanz, M. Hofele, L. Hitzler, M. Merkel, and H. Riegel, Mach. Join Modif. Adv. Mater. 34, 159 (2016).

    Google Scholar 

  16. W.S. Gora et al., Phys. Procedia 83, 258 (2016).

    Article  Google Scholar 

  17. V. Alfieri, P. Argenio, F. Caiazzo, and V. Sergi, Materials 10, 30 (2016).

    Article  Google Scholar 

  18. D. Bhaduri et al., Appl. Surf. Sci. 405, 29 (2017).

    Article  Google Scholar 

  19. J.A. Ramos, J. Murphy, K. Wood, D.L. Bourell, and J.J. Beaman, Surface roughness enhancement of indirect-SLS metal parts by laser surface polishing, in Solid Freeform Fabrication Proceedings, pp. 28–38 (2001).

  20. J.A. Ramos, D.L. Bourell, and J.J. Beaman, Surface over-melt during laser polishing of indirect-SLS metal parts, in MRS Proceedings, vol. 758 (2002).

  21. T.M. Shao, M. Hua, H.Y. Tam, and E.H.M. Cheung, Surf. Coat. Technol. 197, 77 (2005).

    Article  Google Scholar 

  22. T.L. Perry, D. Werschmoeller, N.A. Duffie, X. Li, and F.E. Pfefferkorn, J. Manuf. Sci. Eng. 131, 0210021 (2009).

    Article  Google Scholar 

  23. M. Vadali, C. Ma, N.A. Duffie, X. Li, and F.E. Pfefferkorn, J. Manuf. Process. 14, 307 (2012).

    Article  Google Scholar 

  24. C. Ma, M. Vadali, N.A. Duffie, F.E. Pfefferkorn, and X. Li, J. Manuf. Sci. Eng. 135, 061023 (2013).

    Article  Google Scholar 

  25. C. Ma, M. Vadali, X. Li, N.A. Duffie, and F.E. Pfefferkorn, J. Micro Nano-Manuf. 2, 021010 (2014).

    Article  Google Scholar 

  26. Q. Wang, J.D. Morrow, C. Ma, N.A. Duffie, and F.E. Pfefferkorn, J. Manuf. Process. 20, 340 (2015).

    Article  Google Scholar 

  27. P. Johnson and R. Christy, Phys. Rev. B 9, 5056 (1974).

    Article  Google Scholar 

  28. Stellite 21 Alloy Technical Data, Deloro Stellite, http://exocor.com/downloads/product-datasheets/Stellite-21-Datasheet.pdf.

  29. D.G. Farwick and R.N. Johnson, Thermophysical Properties of Selected Wear-Resistant Alloys (Richland: Hanford Engineering Development Lab, 1980).

    Book  Google Scholar 

  30. Metal Powder and Continuous Casting Rods, Böhler Welding. http://www.bohlerwelding.ru/files/cat/metallpulver.pdf.

  31. M.J. Assael, I.J. Armyra, J. Brillo, S.V. Stankus, J. Wu, and W.A. Wakeham, J. Phys. Chem. Ref. Data 41, 033101 (2012).

    Article  Google Scholar 

  32. E. Ukar, A. Lamikiz, L.N. López de Lacalle, D. del Pozo, and J.L. Arana, Int. J. Mach. Tools Manuf. 50, 115 (2010).

    Article  Google Scholar 

  33. ISO 25178-1:2016(en), Geometrical Product Specifications (GPS) Surface Texture: Areal: Part 1: Indication of Surface Texture.

  34. J.M. Dowden, The Mathematics of Thermal Modeling: An Introduction to the Theory of Laser Material Processing (Boca Raton: CRC Press, 2001).

    Book  MATH  Google Scholar 

  35. G.R.B.E. Römer and A.J. Huisint Veld, Phys. Procedia 5, 413 (2010).

    Article  Google Scholar 

  36. T.L. Perry, D. Werschmoeller, X. Li, F.E. Pfefferkorn, and N.A. Duffie, J. Manuf. Sci. Eng. 131, 031002 (2009).

    Article  Google Scholar 

  37. T.L. Perry, D. Werschmoeller, X. Li, F.E. Pfefferkorn, and N.A. Duffie, J. Manuf. Process. 11, 74 (2009).

    Article  Google Scholar 

  38. F.E. Pfefferkorn, N.A. Duffie, X. Li, M. Vadali, and C. Ma, CIRP Ann. 62, 203 (2013).

    Article  Google Scholar 

  39. M. Vadali, C. Ma, N.A. Duffie, X. Li, and F.E. Pfefferkorn, J. Micro Nano Manuf. 1, 011006 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by U.S. National Science Foundation (NSF) grant CMMI-1727366 and NSF-supported shared facilities at the University of Wisconsin, as well as by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, 386371584).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. E. Pfefferkorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, B., Blanke, N., Werner, C. et al. Effect of Initial Surface Features on Laser Polishing of Co-Cr-Mo Alloy Made by Powder-Bed Fusion. JOM 71, 912–919 (2019). https://doi.org/10.1007/s11837-018-3216-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3216-2

Navigation