Skip to main content
Log in

A RQPSO Algorithm for Multiphase Equilibrium Calculation in the KIVCET Process

  • Multiphase Flows in Materials Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The prediction of phase configurations and the optimization of operating parameters in the metallurgical process are normally achieved by the multiphase equilibrium calculation (MEC), which is formulated as a constrained optimization problem based on the principle of Gibbs free energy minimization. A revised quantum-behaved particle swarm optimization (RQPSO) algorithm has been proposed to solve the optimization problem using three-part improved strategies. Based on the KIVCET smelting characteristics, a MEC model for the KIVCET process is established and solved using the RQPSO algorithm. The calculated and industrial data of the lead grade are 96.20% and 96.33%, respectively, those of the matte grade are 19.39% and 19.68%, and the mass fractions of Pb in the predicted and industrial matte are 3.96% and 3.34%, respectively. The calculated results of the phase configuration are consistent with the actual production data, which indicates that the MEC model and RQPSO algorithm are accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Y.I. Sannikov, M.A. Liamina, V.A. Shumskij, Y.A. Grinin, and M.V. Radashin, CIM Bull. 91, 76 (1998).

    Google Scholar 

  2. L.V. Slobodkin, Y.A. Sannikov, Y. A. Grinin, M.A. Lyamina, V.A. Shumskij, and N.N. Ushakov, Lead-Zinc 2000 Symposium, PA, USA, 687–692 (2000).

  3. J.L. Wang, X.C. Wen, and C.F. Zhang, Trans. Nonferrous Met. Soc. China 25, 1633 (2015).

    Article  Google Scholar 

  4. L. Bai, M.H. Xie, Y. Zhang, and Q. Qiao, J. Cleaner Prod. 159, 432 (2017).

    Article  Google Scholar 

  5. W.B. White, J. Chem. Phys. 28, 751 (1958).

    Article  Google Scholar 

  6. G.P. Rangaiah, Fluid Phase Equilib. 187, 83 (2001).

    Article  Google Scholar 

  7. F. Jalali, J.D. Seader, and S. Khaleghi, Comput. Chem. Eng. 32, 2333 (2008).

    Article  Google Scholar 

  8. G.I. Burgos-Solórzano, J.F. Brennecke, and M.A. Stadtherr, Fluid Phase Equilib. 219, 245 (2004).

    Article  Google Scholar 

  9. H. Zhang, J.A. Fernández-Vargas, G.P. Rangaiah, A. Bonilla-Petriciolet, and J.G. Segovia-Hernández, Fluid Phase Equilib. 310, 129 (2011).

    Article  Google Scholar 

  10. N. Henderson, J.J.R. de Oliveira, H. Souto, and R. Pitanga Marques, Ind. Eng. Chem. Res. 40, 6028 (2001).

    Article  Google Scholar 

  11. Y.S. Teh and G.P. Rangaiah, Chem. Eng. Res. Des. 80, 745 (2002).

    Article  Google Scholar 

  12. D.V. Nichita and S. Gomez, Chem. Eng. J. 152, 251 (2009).

    Article  Google Scholar 

  13. A. Azimifar and S. Payan, Appl. Therm. Eng. 101, 79 (2016).

    Article  Google Scholar 

  14. A. Kabouche, A. Boultif, A. Abidi, and N. Gherraf, Fluid Phase Equilib. 336, 113 (2012).

    Article  Google Scholar 

  15. J. Sun, B. Feng, and W.B. Xu, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, USA, 325–331 (2004).

  16. J. Sun, W.B. Xu, and B. Feng, Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 111–116 (2004).

  17. T.Y. Liu, L.C. Jiao, W.P. Ma, J.J. Ma, and R.H. Shang, Knowl. Based Syst. 101, 90 (2016).

    Article  Google Scholar 

  18. K. Hassani and W.-S. Lee, Appl. Soft Comput. 41, 66 (2016).

    Article  Google Scholar 

  19. T. Liu, L. Jiao, W. Ma, and R. Shang, Commun. Nonlinear Sci. 44, 167 (2017).

    Article  Google Scholar 

  20. R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, X.-Z. Gao, and V. Indragandhi, Future Gener. Comput. Syst. 83, 653 (2017).

    Article  Google Scholar 

  21. D. Wang and S. Yuan, Simul. Model Pract. Th. 69, 1 (2016).

    Article  Google Scholar 

  22. J. Sun, W. Fang, X.J. Wu, V. Palade, and W.B. Xu, Evol. Comput. 20, 349 (2012).

    Article  Google Scholar 

  23. J. Liu, J. Sun, and W.B. Xu, International Conference on Advances in Natural Computation, Xi’an, China, 959 (2006).

  24. K. Deb, Comput. Method Appl. M. 186, 311 (2000).

    Article  Google Scholar 

  25. Q.M. Wang, X.Y. Guo, S.S. Wang, L.L. Liao, and Q.H. Tian, Trans. Nonferrous Met. Soc. China 27, 2503 (2017).

    Article  Google Scholar 

  26. Y. Liang and Y. Che, Inorganic Thermodynamic Data Manual, Northeastern University Press, Shenyang (1993).

    Google Scholar 

  27. P. Tan, C. Zhang, and R. Zhang, J. Cent. South Univ. Technol. 27, 543 (1996).

    Google Scholar 

  28. J.L. Wang, C.F. Zhang, and W.H. Zhang, J. Central South Univ. (Sci. Technol.) 43, 429 (2012).

    Google Scholar 

  29. J.L. Wang, W.H. Zhang, and C.F. Zhang, China J. Nonferrous Met. 21, 2953 (2011).

    Google Scholar 

Download references

Acknowledgement

We would like to express our gratitude to Project supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61621062).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Song, Y., Zhou, P. et al. A RQPSO Algorithm for Multiphase Equilibrium Calculation in the KIVCET Process. JOM 70, 2893–2899 (2018). https://doi.org/10.1007/s11837-018-3174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3174-8

Navigation