Skip to main content
Log in

Properties and Tribologic Behavior of Titanium Carbide Coatings on AISI D2 Steel Deposited by Thermoreactive Diffusion

  • Surface Engineering for Improved Corrosion or Wear Resistance
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the present study, the metallographic, mechanical and tribologic behaviors of AISI D2 steel specimens coated with TiC through the titanizing process were investigated. The titanizing treatment was performed at the temperatures of 900°C, 1000°C or 1100°C for 1 h, 2 h or 3 h using a solid-state box thermoreactive diffusion technique. In all cases, the predominant phase in the coating was TiC, but the mechanical properties of the coating varied with treatment condition. The wear resistance of the coated samples against a linear reciprocating Al2O3 ball improved as the hardness and thickness of the coating increased. The effective wear mechanism of samples that had been treated at 900°C, 1000°C and 1100°C were severe plastic deformation, delamination and polishing type wear, respectively. The wear performance was affected by coating layer’s thickness and uniformity as well as its surface hardness, elastic modulus and toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Schneider, Cutting Tool Application (Upper Saddle River: Prentice-Hall Publication, ASM International, 2002), pp. 2–65.

    Google Scholar 

  2. R.I. King, Handbook of High Speed Machining Technology (London: Springer, 1985), pp. 27–47.

    Book  Google Scholar 

  3. H. Schulz and T. Moriwaki, CIRP Ann. (1996). https://doi.org/10.1016/S0007-8506(07)63250-8.

    Article  Google Scholar 

  4. P. Koshya, R.C. Dewes, and D.K. Aspinwal, J. Mater. Proc. Tech. (2002). https://doi.org/10.1016/S0924-0136(02)00155-3.

    Article  Google Scholar 

  5. G. Roberts, G. Krauss, and R. Kennedy, Tool Steels (Ohio: ASM International, 1980), pp. 493–553.

    Google Scholar 

  6. J.R. Davis, Surface Hardening of Steels: Understanding the Basics (Materials Park: ASM International, 2002), pp. 1–12.

    Google Scholar 

  7. F.E. Castillejo, D.M. Marulanda, J.J. Olaya, and J.E. Alfonso, Surf. Coat. Technol. (2014). https://doi.org/10.1016/j.surfcoat.2014.05.069.

    Article  Google Scholar 

  8. F. Czerwinski, Thermochemical Treatment of Metals (InTech. Open https://doi.org/10.5772/51566, 2012), https://www.intechopen.com/books/heat-treatment-conventional-and-novel-applications/thermochemical-treatment-of-metals. Accessed 17 July 2018.

    Chapter  Google Scholar 

  9. K.M. Winter, J. Kalucki, and D. Koshel, Imp. Mater. Perform. (2015). https://doi.org/10.1533/9780857096524.1.141.

    Article  Google Scholar 

  10. J. Dossett and G.E. Totten, eds., ASM Handbook, Volume 4A, Steel Heat Treating Fundamentals and Processes (Ohio: ASM International, 2013), pp. 705–738.

    Google Scholar 

  11. P.V. Astakhov, Tribology of Metal Cutting (London: Elsevier, 2006), pp. 1–25.

    Google Scholar 

  12. G.T. Smith, Cutting Tool Technology: Industrial Handbook (Southampton: Springer, 2008), pp. 330–373.

    Google Scholar 

  13. T. Aria, Imp. Mater. Perform. (2015). https://doi.org/10.1533/9780857096524.5.703.

    Article  Google Scholar 

  14. H. Pouraliakbara, G. Khalaj, L. Gomidželovic, M.J. Khalaj, and M. Nazerfakhari, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.03.306.

    Article  Google Scholar 

  15. I. Hutchings and P. Shipway, Tribology Friction and Wear Engineering Materials (Amsterdam: Elsevier, 2017), pp. 260–272.

    Google Scholar 

  16. J.F. Shackelford and W. Alexander, Thermal Properties of Materials: Materials Science and Engineering Handbook, ed. J.F. Shackelford and W. Alexander (Boca Raton: CRC Press LLC, 2001), p. 157.

    Google Scholar 

  17. S. Sen, Vacuum (2005). https://doi.org/10.1016/j.vacuum.2005.01.009.

    Article  Google Scholar 

  18. M. Biesuz and V.M. Sglavo, Surf. Coat. Technol. (2016). https://doi.org/10.1016/j.surfcoat.2015.12.063.

    Article  Google Scholar 

  19. S. Taktak and S. Ulu, Ind. Lubr. Tribol. (2010). https://doi.org/10.1108/00368791011012452.

    Article  Google Scholar 

  20. C.K.N. Oliveira, C.L. Benassi, and L.C. Casteletti, Surf. Coat. Technol. (2006). https://doi.org/10.1016/j.surfcoat.2006.03.036.

    Article  Google Scholar 

  21. A. Günen, M.S. Karakaş, B. Kurt, and A. Çalık, Anti-Corros Methods Mater. (2014). https://doi.org/10.1108/ACMM-12-2012-1224.

    Article  Google Scholar 

  22. A. Gunen, M. Ulutan, M.S. Gok, B. Kurt, and N. Orhan, J. Balk. Tribol. Assoc. 20, 362 (2014).

    Google Scholar 

  23. G. Krauss, Steels: Processing, Structure and Performance (Ohio: ASM International, 2015), pp. 335–369.

    Google Scholar 

  24. C. Barret and T.B. Massalski, Structure of Metals (Oxford: Pergamon, 1980), pp. 260–295.

    Google Scholar 

  25. B. Kurt, O. Sinoplu, C. Carboga, and B. Demirel, Pract. Metall. (2014). https://doi.org/10.3139/147.110235.

    Article  Google Scholar 

  26. G.T. Bu, Y. Gao, and C.L. Wang, Mater. Sci. Forum (2012). https://doi.org/10.4028/www.scientific.net/MSF.704-705.1152.

    Article  Google Scholar 

  27. Q. Xue, J. Li, P. Fan, R. Xin, and J. Zhang, Study on corrosion and wear resistance of titanizing coating on steel surface, (OnePetro publishing, 2015). https://www.onepetro.org/conference-paper/ISOPE-I-15-312. Accessed 17 June 2018.

  28. M.S. Gök, Y. Küçük, A. Erdoğan, M. Öğe, E. Kanca, and A. Günen, Surf. Coat. Technol. (2017). https://doi.org/10.1016/j.surfcoat.2017.08.008.

    Article  Google Scholar 

  29. D. Inman, A. Sodano, and J. Lloyd, Smart Mater. Struct. (2006). https://doi.org/10.1088/0964-1726/15/5/007.

    Article  Google Scholar 

  30. F.H. Stott and M.P. Jordan, Wear (2001). https://doi.org/10.1016/S0043-1648(01)00601-9.

    Article  Google Scholar 

  31. K. Kato, Tribol. Int. (1997). https://doi.org/10.1016/S0301-679X(96)00063-1.

    Article  Google Scholar 

  32. N.M. Ismail, N.A. Amir-Khatif, M.A.K. Awang-Kecik, and M.A. Hanafiah-Shaharudin, Mater. Sci. Eng. (2016). https://doi.org/10.1088/1757-899X/114/1/012108.

    Article  Google Scholar 

  33. U. Sen and S. Sen, Mater. Charact. (2003). https://doi.org/10.1016/S1044-5803(03)00104-9.

    Article  Google Scholar 

  34. N. Outsuku and T. Muragami, Proceedings of Japan Society of Lubricants Engineering Annual Conference, October, 369–372, (1983).

  35. J. Jiang, F.H. Stott, and M.M. Stack, Wear (1995). https://doi.org/10.1016/0043-1648(95)90004-7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Günen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, B., Günen, A., Kanca, Y. et al. Properties and Tribologic Behavior of Titanium Carbide Coatings on AISI D2 Steel Deposited by Thermoreactive Diffusion. JOM 70, 2650–2659 (2018). https://doi.org/10.1007/s11837-018-3108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3108-5

Navigation