Skip to main content
Log in

Effect of Boron on Microstructure and Fracture of Sintered Ultrafine-Grained Tungsten

  • Recent Advances in Design and Development of Refractory Metals and Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultrafine-grained tungsten shows strong potential for ballistic applications because of its increased strength, and higher propensity for strain localization compared with coarse-grained materials. However, tungsten typically exhibits poor ductility at room temperature and fractures by a brittle intergranular mechanism. This study evaluates the effects of boron as a sintering aid and grain-boundary strengthening additive for ultrafine-grained tungsten prepared by powder metallurgical methods. While boron did not improve the sinterability of nanocrystalline tungsten in this study, low concentrations of boron delivered a notable increase in strength, accompanied with a transition from intergranular to transgranular fracture. These significant changes in fracture behavior show promise for improving the low-temperature ductility of tungsten; however, the corresponding improvements to plastic strain to failure were less significant than anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.S. Magness, Properties and performance of KE penetrator materials. Tungsten & Tungsten Alloys, ed. A. Bose and R.J. Dowding (Princeton: MPIF, 1992), pp. 15–22.

    Google Scholar 

  2. L.S. Magness, Mech. Mater. 17, 147 (1994).

    Article  Google Scholar 

  3. L.S. Magness and T.G. Farrand, in Proceedings of the 1990 Army Science Conference, (US Army, Durham, NC, 1990), pp. 149–65

  4. M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  Google Scholar 

  5. Z.C. Cordero, E.L. Huskins, M. Park, S. Livers, M. Frary, B.E. Schuster, and C.A. Schuh, Metall. Trans. A 45, 3609 (2014).

    Article  Google Scholar 

  6. K.T. Ramesh, Nanomaterials: Mechanics and Mechanisms (New York: Springer, 2009), pp. 201–213.

    Book  Google Scholar 

  7. T.W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (Cambridge: Cambridge University Press, 2002).

    MATH  Google Scholar 

  8. B. Butler, E. Klier, D. Casem, A. Dwivedi, M. Gallagher, and J. Hays, in Report No. ARL-TR-6214, US Army Research Laboratory, Aberdeen Proving Ground, MD, September 2012

  9. B. Butler, E. Klier, M. Kelly, and M. Gallagher, in Report No. ARL-TR-5541, US Army Research Laboratory, Aberdeen Proving Ground, MD, May 2011

  10. J.P. Tran-Huu-Loi, M.M. Gantoi, and M. Lahaye, J. Mater. Sci. 20, 199 (1985).

    Article  Google Scholar 

  11. B. Gludovatz, S. Wurster, A. Hoffmann, and R. Pippan, Int. J. Refract. Met. Hard Mater. 28, 674 (2010).

    Article  Google Scholar 

  12. B. Gludovatz, S. Wurster, T. Weingärtner, A. Hoffmann, and R. Pippan, Philos. Mag. 91, 3006 (2011).

    Article  Google Scholar 

  13. A.S. Argon, Strengthening Mechanisms in Crystal Plasticity (Oxford: Oxford University Press, 2008).

    Google Scholar 

  14. B.V. Petukhov, Crystallogr. Rep. 52, 112 (2007).

    Article  Google Scholar 

  15. H. Li, S. Wurster, C. Motz, L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Acta Mater. 60, 748 (2012).

    Article  Google Scholar 

  16. L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Phys. Rev. Lett. 104, 195503 (2010).

    Article  Google Scholar 

  17. P.J. Fink, J.L. Miller, and D.G. Konitzer, JOM 62, 55 (2010).

    Article  Google Scholar 

  18. G.L. Krasko, Scr. Metall. Mater. 28, 1543 (1993).

    Article  Google Scholar 

  19. M. Grujicic, H. Zhao, and G.L. Krasko, Int. J. Refract. Met. Hard Mater. 15, 341 (1997).

    Article  Google Scholar 

  20. E.P. George, C.T. Liu, and D.P. Pope, Acta Mater. 44, 1757 (1996).

    Article  Google Scholar 

  21. T.P. Weihs, V. Zinoviev, D.V. Viens, and E.M. Schulson, Acta. Metall. 35, 1109 (1987).

    Article  Google Scholar 

  22. M.K. Miller, E.A. Kenik, M.S. Mousa, K.F. Russell, and A.J. Bryhan, Scr. Mater. 46, 299 (2002).

    Article  Google Scholar 

  23. M. Debata and A. Upadhyaya, J. Mater. Sci. 39, 2539 (2004).

    Article  Google Scholar 

  24. S.W.H. Yih and C.T. Wang, Tungsten: Sources, Metallurgy, Properties and Applications (New York: Plenum, 1979), pp. 163–174.

    Book  Google Scholar 

  25. P. Follansbee and C. Frantz, J. Eng. Mater. Technol. 105, 61 (1983).

    Article  Google Scholar 

  26. L. Ren, M. Larson, B.A. Gama, and J.W. Gillespie, in Report No. ARL-CR-551, US Army Research Laboratory, Contract No. DAAD19-01-2-0005, University of Delaware, Newark, DE, September 2004

  27. E. Lassner and W.D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (New York: Kluwer Academic and Plenum, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Micah Gallagher, Judy Hays, and David Runk for assistance in powder processing, James Catalano for preparation of metallographic samples, Bradley Klotz for acquiring SEM micrographs, and Ajmer Dwivedi for assistance with mechanical testing. Additionally, this research was supported in part (J.P.) by an appointment to the Postgraduate Research Participation Program at the US Army Research Laboratory (USARL) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy (DOE) and USARL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brady G. Butler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butler, B.G., Middlemas, S.C., Klier, E.M. et al. Effect of Boron on Microstructure and Fracture of Sintered Ultrafine-Grained Tungsten. JOM 70, 2537–2543 (2018). https://doi.org/10.1007/s11837-018-3060-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-3060-4

Navigation