Skip to main content

Advertisement

Log in

The Effect of CO2 Pressure on Chromia Scale Microstructure at 750°C

  • Nuclear Materials, Oxidation, Supercritical CO2, and Corrosion Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

To understand and model performance in supercritical CO2 (sCO2) for high-efficiency, concentrating solar power (CSP) and fossil energy power cycles, reaction rates are compared at 750°C in 0.1 MPa CO2 and 30 MPa sCO2 as well as laboratory air as a baseline on structural materials such as Ni-based alloy 625. Due to the thin reaction products formed even after 5000 h, scanning transmission electron microscopy was used to study the Cr-rich surface oxide scale. The scales formed in CO2 and sCO2 had a much finer grain size with more voids observed in CO2. However, the observations on alloy 625 were complicated by Mo and Nb-rich precipitates in the adjacent substrate and Al internal oxidation. To simplify the system, a binary Ni-22Cr alloy was exposed for 1000 h in similar environments. After exposure in sCO2, there was an indication of carbon segregation detected on the Cr2O3 grain boundaries. After exposure in air, metallic Ni precipitates were observed in the scale that were not observed in the scale formed on alloy 625. The scale formed in air on a second Ni-22Cr model alloy with Mn and Si additions did not contain Ni precipitates, suggesting caution when drawing conclusions from model alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Dostal, P. Hejzlar, and M.J. Driscoll, Nucl. Technol. 154, 265 (2006).

    Article  Google Scholar 

  2. B.D. Iverson, T.M. Conboy, J.J. Pasch, and A.M. Kruizenga, Appl. Energy 111, 957 (2013).

    Article  Google Scholar 

  3. R.J. Allam, M.R. Palmer, G.W. Brown Jr, J. Fetvedt, D. Freed, H. Nomoto, M. Itoh, N. Okita, and C. Jones Jr, Energy Procedia 37, 1135 (2013).

    Article  Google Scholar 

  4. V.T. Cheang, R.A. Hedderwick, and C. McGregor, Sol. Energy 113, 199 (2015).

    Article  Google Scholar 

  5. D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed. (Oxford: Elsevier, 2016).

    Google Scholar 

  6. D. Huenert and A. Kranzmann, NACE Paper 08-447, Houston, TX, presented at NACE Corrosion 2008, (New Orleans, LA, 2008)

  7. B.A. Pint and J.R. Keiser, JOM 67, 2615 (2015).

    Article  Google Scholar 

  8. B.A. Pint, R.G. Brese, and J.R. Keiser, Mater. Corros. 68, 151 (2017).

    Article  Google Scholar 

  9. B.A. Pint, R. Brese, and J.R. Keiser, ASME Paper #GT2017-65066, for the International Gas Turbine & Aeroengine Congress & Exhibition (Charlotte, NC, 2017)

  10. B.A. Pint, K.A. Unocic, R.G. Brese, and J.R. Keiser, Mater. High Temp. 35, 39 (2018).

    Article  Google Scholar 

  11. E.G. Feher, Energy Convers. 8, 85 (1968).

    Article  Google Scholar 

  12. H.E. McCoy, Corrosion 21, 84 (1965).

    Article  Google Scholar 

  13. W.R. Martin and J.R. Weir, J. Nucl. Mater. 16, 19 (1965).

    Article  Google Scholar 

  14. H.E. Evans, D.A. Hilton, and R.A. Holm, Oxid. Met. 10, 149 (1976).

    Article  Google Scholar 

  15. J.C.P. Garrett, J.T. Crook, S.K. Lister, P.J. Nolan, and J.A. Twelves, Corros. Sci. 22, 37 (1982).

    Article  Google Scholar 

  16. P.C. Rowlands, J.C.P. Garrett, L.A. Popple, A. Whittaker, and A. Hoaskey, Nucl. Energy 25, 267 (1986).

    Google Scholar 

  17. Y. Gong, D.J. Young, P. Kontis, Y.L. Chiu, H. Larsson, A. Shin, J.M. Pearson, M.P. Moody, and R.C. Reed, Acta Mater. 130, 361 (2017).

    Article  Google Scholar 

  18. C.T. Fujii and R.A. Meussner, J. Electrochem. Soc. 114, 435 (1967).

    Article  Google Scholar 

  19. F. Rouillard, F. Charton, and G. Moine, Corrosion 67, 095001 (2011).

    Article  Google Scholar 

  20. T. Furukawa and F. Rouillard, Prog. Nucl. Energy 82, 136 (2015).

    Article  Google Scholar 

  21. R.I. Olivares, D.J. Young, P. Marvig, and W. Stein, Oxid. Met. 84, 585 (2015).

    Article  Google Scholar 

  22. R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, J. Mater. Eng. Perf. 14, 281 (2005).

    Article  Google Scholar 

  23. G.C. Wood, I.G. Wright, T. Hodgkiess, and D.P. Whittle, Werk. Korr. 21, 900 (1970).

    Article  Google Scholar 

  24. G.H. Meier, W.C. Coons, and R.A. Perkins, Oxid. Met. 17, 235 (1982).

    Article  Google Scholar 

  25. B. Jönsson and C. Svedberg, Mater. Sci. Forum 251–254, 551 (1997).

    Article  Google Scholar 

  26. I.G. Wright and R.B. Dooley, Int. Mater. Rev. 55, 129 (2010).

    Article  Google Scholar 

  27. N. Mu, K.Y. Jung, N.M. Yanar, G.H. Meier, F.S. Pettit, and G.R. Holcomb, Oxid. Met. 78, 221 (2012).

    Article  Google Scholar 

  28. E. Essuman, L.R. Walker, P.J. Maziasz, and B.A. Pint, Mater. Sci. Technol. 29, 822 (2013).

    Article  Google Scholar 

  29. C.H. Oh, T. Lillo, W. Windes, T. Totemeier, B. Ward, R. Moore, and R. Barner, Idaho National Laboratory Report INL/EXT-06-01271, (2006)

  30. H.J. Lee, H. Kim, S.H. Kim, and C. Jang, Corros. Sci. 99, 227 (2015).

    Article  Google Scholar 

  31. J. Mahaffey, D. Adam, A. Brittan, M. Anderson, and K. Sridharan, Oxid. Met. 86, 567 (2016).

    Article  Google Scholar 

  32. L.M. Pike, in Superalloys 2008, eds. by R.C. Reed et al. TMS (Warrendale, PA, 2008), p. 191)

  33. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and W.J. Quadakkers, Oxid. Met. 75, 143 (2011).

    Article  Google Scholar 

  34. M.J. Lance and B.A. Pint, in Proceedings of the 6th International Symposium on Supercritical CO 2 Power Cycles (Pittsburgh, PA, 2018), Paper #117 (2018)

  35. B.A. Pint and K.A. Unocic, Oxid. Met. 87, 515 (2017).

    Article  Google Scholar 

  36. Z. Zeng, K. Natesan, Z. Cai, and S.B. Darling, Nat. Mater. 7, 641 (2008).

    Article  Google Scholar 

  37. D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, and J.M. Cairney, Scripta Mater. 77, 29 (2014).

    Article  Google Scholar 

  38. I. Wolf and H.J. Grabke, Solid State Commun. 54, 5 (1985).

    Article  Google Scholar 

  39. T.D. Nguyen, J. Zhang, and D.J. Young, Corr. Sci. 76, 231 (2013).

    Article  Google Scholar 

  40. W.J. Quadakkers, H. Holzbrecher, K.G. Briefs, and H. Beske, Oxid. Met. 32, 67 (1989).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank M. Howell, M. Stephens, G. Garner, T. Lowe, T. Jordan, D. Coffey and C. Parrish at ORNL for assistance with the experimental work and S. Dryepondt and L. Allard for comments on the manuscript. The authors appreciate the donation of alloy 625 from Haynes International. This research was funded by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office: SuNLaMP award number DE-EE0001556 and by the Office of Fossil Energy (Grant No. FEAA123), Crosscutting Technology Program. The STEM work was supported by the Office of Nuclear Energy, Fuel Cycle R&D Program and the Nuclear Science User Facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pint, B.A., Unocic, K.A. The Effect of CO2 Pressure on Chromia Scale Microstructure at 750°C. JOM 70, 1511–1519 (2018). https://doi.org/10.1007/s11837-018-2963-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2963-4

Navigation