Skip to main content
Log in

Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams

  • Metal and Polymer Matrix Composites
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Syntactic foams (SFs) and metal matrix syntactic foams (MMSFs) represent an advanced type of metal matrix composites (MMCs) based on hollow microspheres as particulate reinforcement. In general, SF and MMSFs allow tailoring of properties through choice of matrix, reinforcement, and volume fraction of the latter. A further handle for property adjustment is surface modification of the reinforcing particles. The present study introduces cenospheres for use as filler material in SF and MMSFs and as lightweight filler with electromagnetic interference shielding properties in civil engineering, which have been surface coated by means of physical vapor deposition, namely vibration-assisted sputter coating using a magnetron sputtering system. Altogether four types of such cenosphere-based composite powders (CPs) with an original particle size range of 50–125 µm (average particle size d50 75 µm) were studied. Surface films deposited on these were composed of Cu, stainless steel, Ti, and Ti-TiN double layers. For Cu coatings, the deposited metal film thickness was shown to be dependent on the sputtering energy. Scanning electron microscope backscattering images revealed nonporous films uniform in thickness directly after sputtering. Film thickness varied between 0.15 µm and 2.5 µm, depending on coating material and sputtering parameters. From these materials, samples were produced without addition of metal powders, exhibiting metal contents as low as 8–10 wt.% based on the coating alone. Obtained samples had an apparent density of 1.1–1.9 g/cm3 and compressive strengths ranging from 22 MPa to 135 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Kolay and D. Singh, Cem. Concr. Res. 31, 539 (2001).

    Article  Google Scholar 

  2. L. Peroni, M. Scapin, C. Fichera, D. Lehmhus, J. Weise, J. Baumeister, and M. Avalle, Compos. Part B Eng. 66, 430 (2014).

    Article  Google Scholar 

  3. D. Luong, D. Lehmhus, N. Gupta, J. Weise, and M. Bayoumi, Materials 9, 115 (2016).

    Article  Google Scholar 

  4. J. Weise, D. Lehmhus, J. Baumeister, R. Kun, M. Bayoumi, and M. Busse, Steel Res. Int. 85, 486 (2014).

    Article  Google Scholar 

  5. X. Yu and Z. Shen, J. Magn. Magn. Mater. 321, 2890 (2009).

    Article  Google Scholar 

  6. C. Cai, X. Yu, Z. Shen, and Y. Xing, J. Phys. D Appl. Phys. 40, 6026 (2007).

    Article  Google Scholar 

  7. Z. Xu, X. Yu, and Z. Shen, China Particuol. 5, 345 (2007).

    Article  Google Scholar 

  8. X. Yu, Z. Shen, and Z. Xu, Nucl. Instrum. Methods Phys. Res. Sect. B 265, 637 (2007).

    Article  Google Scholar 

  9. X. Yu, Z. Shen, Z. Xu, and S. Wang, Appl. Surf. Sci. 253, 7082 (2007).

    Article  Google Scholar 

  10. X.Z. Yu and Z.G. Shen, Indian J. Phys. 89, 489 (2015).

    Article  Google Scholar 

  11. X. Meng and X. Shen, Particuology 10, 334 (2012).

    Article  Google Scholar 

  12. Z. Xu, X. Yu, C. Cai, and Z. Shen, Rare Met. 26, 617 (2007).

    Article  Google Scholar 

  13. N. Gupta and P.K. Rohatgi, Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications (Lancaster, PA: DEStech Publications Inc, 2014).

    Google Scholar 

  14. B.R. Bharath Kumar, M. Doddamani, S.E. Zeltmann, N. Gupta, M.R. Ramesh, and S. Ramakrishna, Mater. Des. 92, 414 (2016).

    Article  Google Scholar 

  15. S.E. Zeltmann, B. Chen, and N. Gupta, Mater. Perform. Charact. 6, MPC20150056 (2017).

    Article  Google Scholar 

  16. B.R. Bharath Kumar, M. Doddamani, S.E. Zeltmann, N. Gupta, S.Gurupadu Uzma, and R.R.N. Sailaja, J. Mater. Sci. 51, 3793 (2016).

    Article  Google Scholar 

  17. B.R. Bharath Kumar, S.E. Zeltmann, M. Doddamani, N. Gupta, Uzma, S. Gurupadu, and R.R.N. Sailaja, J. Appl. Polymer Sci., 133 (2016).

  18. X.-F. Meng, X.-Q. Shen, and W. Liu, Appl. Surf. Sci. 258, 2627 (2012).

    Article  Google Scholar 

  19. M. Mathapati, M.R. Ramesh, and M. Doddamani, Surf. Coat. Technol. 325, 98 (2017).

    Article  Google Scholar 

  20. D. Lehmhus, A. von Hehl, K. Kayvantash, R. Gradinger, T. Becker, K. Schimanski, and M. Avalle, Mater. Des. 66, 385 (2015).

    Article  Google Scholar 

  21. M. Carlberg, T. Koppel, M. Ahonen, and L. Hardell, Biomed. Res. Int. 2018, 1 (2018).

    Article  Google Scholar 

  22. T. Koppel, I. Vilcane, and P. Tint, in Engineering for Rural Development (2017), pp. 1024–1037.

  23. M. Carlberg, T. Koppel, M. Ahonen, and L. Hardell, Am. J. Ind. Med. 60, 494 (2017).

    Article  Google Scholar 

  24. T. Koppel and P. Tint, Agron. Res. 12, 863 (2014).

    Google Scholar 

  25. T. Koppel and M. Ahonen, Elektronika Ir Elektrotechnika 19, 65 (2013).

    Article  Google Scholar 

  26. P.J. Bora, K.J. Vinoy, P.C. Ramamurthy, Kishore, and G. Madras, Compos. Commun. 4, 37 (2017).

    Article  Google Scholar 

  27. C. Cai, Z. Shen, M. Wang, S. Ma, and Y. Xing, China Particuol. 1, 156 (2003).

    Article  Google Scholar 

  28. A. Shishkin, T. Koppel, V. Mironov, I. Hussainova, J. Locs, and H. Haldre, Energy Procedia 113, 354 (2017).

    Article  Google Scholar 

  29. T. Koppel, A. Shishkin, H. Haldre, N. Toropovs, I. Vilcane, and P. Tint, Energy Procedia 113, 158 (2017).

    Article  Google Scholar 

  30. T. Koppel, I. Vilcane, V. Mironov, A. Shiskin, S. Rubene, and P. Tint, Proc. Int. Sci. Pract. Conf. 3, 145 (2017).

    Google Scholar 

  31. J. Baronins, J. Setina, G. Sahmenko, S. Lagzdina, and A. Shishkin, IOP Conf. Ser. Mater. Sci. Eng. 96, 12011 (2015).

    Article  Google Scholar 

  32. N. Barbare, A. Shukla, and A. Bose, Cem. Concr. Res. 33, 1681 (2003).

    Article  Google Scholar 

  33. V. Tiwari, A. Shukla, and A. Bose, Appl. Acoust. 65, 263 (2004).

    Article  Google Scholar 

  34. A. Shishkin, V. Mironovs, V. Zemchenkovs, and I. Hussainova, in EURO PM2014 Congress: PM Functional Materials (EPMA, Salzburg, 2014), p. Code 117821.

  35. A. Shishkin, V. Mironovs, V. Zemchenkov, M. Antonov, and I. Hussainova, Key Eng. Mater. 674, 35 (2016).

    Article  Google Scholar 

  36. A. Shishkin, M. Drozdova, V. Kozlov, I. Hussainova, and D. Lehmhus, Metals 7, 16 (2017).

    Article  Google Scholar 

  37. J.G. Li, Ceram. Int. 20, 391 (1994).

    Article  Google Scholar 

  38. W. Yanfeng, L. Zhengxian, W. Haonan, D. Jihong, and Z. Changwei, Rare Metal Mater. Eng. 46, 1219 (2017).

    Article  Google Scholar 

  39. W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, and H. Zbib, Acta Mater. 122, 99 (2017).

    Article  Google Scholar 

  40. W. Yang, G. Ayoub, I. Salehinia, B. Mansoor, and H. Zbib, Acta Mater. 135, 348 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by the European Regional Development Fund Project No. 1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” is acknowledged (A. Shishkin). This work was also supported by the Estonian Research Council under PUT1063 (I. Hussainova).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shishkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkin, A., Hussainova, I., Kozlov, V. et al. Metal-Coated Cenospheres Obtained via Magnetron Sputter Coating: A New Precursor for Syntactic Foams. JOM 70, 1319–1325 (2018). https://doi.org/10.1007/s11837-018-2886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2886-0

Navigation