Skip to main content
Log in

Forming Quality Control of an AA5182-O Aluminum Alloy Engine Hood Inner Panel

  • Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The poor formability of aluminum alloys at room temperature easily leads to quality defects such as ruptures, wrinkles and excessive springback after forming, which severely restricts their wide application in the automotive industry. In this article, a combination of springback compensation and process parameter optimization is proposed to improve the forming quality of aluminum alloy auto body panels. First, the springback compensation for the tooling setting was conducted using the global shape modeling (GSM) function in ThinkDesign to ensure the desired dimensional quality of the hood. Then, the process parameter optimization was conducted based on the combination of a back-propagation (BP) neural network and genetic algorithm (GA) method to improve formability. After springback compensation and process parameter optimization, the obtained product could satisfy the matching requirements well. A case study of an AA5182-O aluminum alloy engine hood inner panel is presented. The experiments demonstrate that the combination of the springback compensation and the optimization scheme based on the BP neural network and GA can effectively improve the product’s forming quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.I. Taub and A.A. Luo, MRS Bull. 40, 1045 (2015).

    Article  Google Scholar 

  2. X. Xu, L. Zhan, and M. Huang, Am. Inst. Phys. Conf. Ser. 1567, 732 (2013).

    Google Scholar 

  3. X. Peng, S. Shi, and K. Hu, J. Mater. Eng. Perform. 22, 2990 (2013).

    Article  Google Scholar 

  4. W.J. Joost, JOM 64, 1032 (2012).

    Article  Google Scholar 

  5. A. Rohatgi, A. Soulami, E.V. Stephens, R.W. Davies, and M.T. Smith, J. Mater. Process. Technol. 214, 722 (2014).

    Article  Google Scholar 

  6. C.A. Ungureanu, S. Das and I.S. Jawahir, in Aluminium Alloys for Transportation, 2007.

  7. J. Liu, H. Gao, O.E. Fakir, L. Wang and J. Lin, in MATEC Web of Conferences, 2015.

  8. P.F. Bariani, S. Bruschi, A. Ghiotti, and F. Michieletto, Procedia Cirp 18, 68 (2014).

    Article  Google Scholar 

  9. M. Jinta, Y. Sakai, S. Horie, M. Oyagi, K. Matsui, and Y. Hasegawa, JSAE Rev. 22, 84 (2001).

    Article  Google Scholar 

  10. J. Zhou, B. Wang, J. Lin, and L. Fu, Arch. Civ. Mech. Eng. 13, 401 (2013).

    Article  Google Scholar 

  11. X. Fan, Z. He, and S. Yuan, Trans. Nonferr. Metals Soc. 22, s389 (2012).

    Article  Google Scholar 

  12. Y. Wang, G. Huang, D. Liu, L. Chen, T. Han, J. Peng, and F. Pan, Trans. Nonferr. Metals Soc. 26, 1251 (2016).

    Article  Google Scholar 

  13. L. Ju, T. Mao, J. Malpica, and T. Altan, J. Manuf. Sci. E.-T. ASME 137, 1 (2015).

    Google Scholar 

  14. I.A. Choudhury and V. Ghomi, Proc. Inst. Mech. Eng. B J. Eng. 228, 917 (2013).

    Article  Google Scholar 

  15. D.M. Neto, M.C. Oliveira, R.E. Dick, P.D. Barros, J.L. Alves, and L.F. Menezes, Int. J. Mater. Form. 10, 125 (2017).

    Article  Google Scholar 

  16. S. Raju, G. Ganesan, and R. Karthikeyan, Trans. Nonferr. Metals Soc. 20, 1856 (2010).

    Article  Google Scholar 

  17. J. Chen, F. Lan, J. Wang, and Y. Wang, Global Design to Gain a Competitive Edge (Berlin: Springer, 2008), p. 529.

    Book  Google Scholar 

  18. S. Toros, F. Ozturk, and I. Kacar, J. Mater. Process. Technol. 207, 1 (2008).

    Article  Google Scholar 

  19. W. Gao, D. Wang, M. Seifi, and J.J. Lewandowski, Mater. Sci. Eng. A 730, 367 (2018).

    Article  Google Scholar 

  20. F. Barlat, Int. J. Plast. 5, 51 (1989).

    Article  Google Scholar 

  21. H. Xiao, Forming Analysis and Springback Controlling of Automotive Structural Part Using AHSS (Jinan: Shandong University, 2015) (in Chinese).

    Google Scholar 

  22. F. Yin, H.J. Mao, and L. Hua, Mater. Des. 32, 3457 (2011).

    Article  Google Scholar 

  23. H.M. Fang and G.S. Zhang, Appl. Mech. Mater. 33, 496 (2010).

    Article  Google Scholar 

  24. W. Wang, G. Chen, and Z. Lin, Trans. Nonferr. Metals Soc. 20, 471 (2010).

    Article  Google Scholar 

  25. M. Lovell, C.F. Higgs, P. Deshmukh, and A. Mobley, J. Mater. Process. Technol. 177, 87 (2006).

    Article  Google Scholar 

  26. G. Ma and B. Huang, J. Appl. Math. 2014, 1 (2014).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (U1564202), the National Natural Science Foundation of China (Grant Nos. 51405358 and 51775397), the 111 Project (B17034), the Innovative Research Team Development Program of Ministry of Education of China (IRT13087) and the Young and Middle-aged Science and Technology Innovation Team Project of Hubei Province (T201629). The authors express their sincere appreciation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhili Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Hu, Z., Hu, W. et al. Forming Quality Control of an AA5182-O Aluminum Alloy Engine Hood Inner Panel. JOM 71, 1687–1695 (2019). https://doi.org/10.1007/s11837-018-03326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-03326-2

Navigation