Skip to main content
Log in

Structural Evolution of Q-Carbon and Nanodiamonds

  • Advanced Characterization of Interfaces and Thin Films
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp3 content. The phenomenon of solid–liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp3 content of DLC thin films was modeled based on perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Narayan, V. Godbole, and C. White, Science 252, 416 (1991).

    Article  Google Scholar 

  2. J. Narayan and A. Bhaumik, J. Appl. Phys. 118, 215303 (2015).

    Article  Google Scholar 

  3. J. Narayan and A. Bhaumik, Mater. Res. Lett. 4, 118 (2016).

    Article  Google Scholar 

  4. S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Unpublished research (2017).

  5. A. Bhaumik, R. Sachan, and J. Narayan, J. Appl. Phys. 122, 045301 (2017).

    Article  Google Scholar 

  6. J. Narayan and A. Bhaumik, Mater. Res. Lett. 5, 242 (2016).

    Article  Google Scholar 

  7. H. Kumomi, Appl. Phys. Lett. 83, 434 (2003).

    Article  Google Scholar 

  8. K. Jackson, Surface Modification and Alloying (Berlin: Springer, 1983), pp. 51–79.

    Book  Google Scholar 

  9. J. Narayan, J. Appl. Phys. 53, 8607 (1982).

    Article  Google Scholar 

  10. F. Spaepen, D. Turnbull, J. Poate, and J. Mayer, Laser Annealing of Semiconductors (New York: Academic, 1982), pp. 15–42.

    Book  Google Scholar 

  11. NIST, Chemistry Webbook. http://webbook.nist.gov/cgi/cbook.cgi?ID=C7440440&Mask=2.

  12. A. Cullis, N. Chew, H. Webber, and D.J. Smith, J. Cryst. Growth 68, 624 (1984).

    Article  Google Scholar 

  13. R.K. Singh and J. Narayan, Mater. Sci. Eng. B 3, 217 (1989).

    Article  Google Scholar 

  14. M. Shamsa, W. Liu, A. Balandin, C. Casiraghi, W. Milne, and A. Ferrari, Appl. Phys. Lett. 89, 161921 (2006).

    Article  Google Scholar 

  15. B. Larson, J. Tischler, and D. Mills, J. Mater. Res. 1, 144 (1986).

    Article  Google Scholar 

  16. J. Narayan, H. Naramoto, and C. White, J. Appl. Phys. 53, 912 (1982).

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Science Foundation (Grant Nos. DMR-1735695 and DMR-1560838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdish Narayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Bhaumik, A., Sachan, R. et al. Structural Evolution of Q-Carbon and Nanodiamonds. JOM 70, 450–455 (2018). https://doi.org/10.1007/s11837-017-2714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2714-y

Navigation