Skip to main content
Log in

Modeling Early-Stage Processes of U-10 Wt.%Mo Alloy Using Integrated Computational Materials Engineering Concepts

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Allison, D. Backman, and L. Christodoulou, JOM 58, 25 (2006).

    Article  Google Scholar 

  2. J. Allison, M. Li, C. Wolverton, and X. Su, JOM 58, 28 (2006).

    Article  Google Scholar 

  3. D.E. Burkes, R. Prabhakaran, T. Hartmann, J.-F. Jue, and F.J. Rice, Nucl. Eng. Des. 240, 1332 (2010).

    Article  Google Scholar 

  4. M. Meyer, G. Hofman, S. Hayes, C. Clark, T. Wiencek, J. Snelgrove, R. Strain, and K.-H. Kim, J. Nucl. Mater. 304, 221 (2002).

    Article  Google Scholar 

  5. J.L. Snelgrove, G. Hofman, M. Meyer, C. Trybus, and T. Wiencek, Nucl. Eng. Des. 178, 119 (1997).

    Article  Google Scholar 

  6. J. Sease, R. Primm III, and J. Miller, Conceptual process for the manufacture of low-enriched uranium/molybdenum fuel for the high flux isotope reactor, Oak Ridge National Laboratory ORNL/TM-2007/39 (2007).

  7. D.M. Wachs, C.R. Clark, and R.J. Dunavant, Idaho National Laboratory Report INL/EXT-08-13840 (2008).

  8. H. Ozaltun, M.-H.H. Shen, and P. Medvedev, J. Nucl. Mater. 419, 76 (2011).

    Article  Google Scholar 

  9. G.K. Miller, D.E. Burkes, and D.M. Wachs, Mater. Des. 31, 3234 (2010).

    Article  Google Scholar 

  10. J. Crapps, K. Clarke, J. Katz, D.J. Alexander, B. Aikin, V.D. Vargas, J.D. Montalvo, D.E. Dombrowski, and B. Mihaila, JOM 254, 43 (2013).

    Google Scholar 

  11. W. Bostrom and E. Halteman, The Metastable Gamma Phase in Uranium Base Molybdenum Alloys (Pittsburgh: Westinghouse Electric Corp. Bettis Plant, 1956).

    Book  Google Scholar 

  12. M. Waldron, R. Burnett, and S. Pugh, The mechanical properties of uranium-molybdenum alloys, Atomic Energy Research Establishment, Harwell, Berks, England (1958).

  13. R. Craik, D. Birch, C. Fizzotti, and F. Saraceno, J. Nucl. Mater. 6, 13 (1962).

    Article  Google Scholar 

  14. B. Butcher and B. Hatt, J. Nucl. Mater. 11, 163 (1964).

    Article  Google Scholar 

  15. R. Hills, B. Butcher, and B. Howlett, J. Nucl. Mater. 11, 149 (1964).

    Article  Google Scholar 

  16. K. Hoge, J. Basic Eng. 6, 509 (1966).

    Article  Google Scholar 

  17. V.V. Joshi, E.A. Nyberg, C.A. Lavender, D. Paxton, H. Garmestani, and D.E. Burkes, J. Nucl. Mater. 465, 805 (2015).

    Article  Google Scholar 

  18. V.V. Joshi, E.A. Nyberg, C.A. Lavender, D. Paxton, and D.E. Burkes, J. Nucl. Mater. 465, 710 (2015).

    Article  Google Scholar 

  19. Z. Xu, V. Joshi, S. Hu, D. Paxton, C. Lavender, and D. Burkes, J. Nucl. Mater. 471, 154 (2016).

    Article  Google Scholar 

  20. F. Meurling, A. Melander, M. Tidesten, and L. Westin, Int. J. Fatigue 23, 215 (2001).

    Article  Google Scholar 

  21. J. Daigne, M. Guttmann, and J. Naylor, Mater. Sci. Eng. 56, 1 (1982).

    Article  Google Scholar 

  22. A. Soulami, Z. Xu, V. Joshi, D. Burkes, C. Lavender, and E. McGarrah, U-10Mo/Zircaloy-2 interface modeling using a microstructure-based fem approach, Pacific Northwest National Laboratory Report PNNL-25365 (2016).

  23. D.J. Edwards, R.M. Ermi, A.L. Schemer-Kohrn, N.R. Overman, C.H. Henager, D. Burkes, and D.J. Senor, Characterization of U-Mo foils for AFIP-7, Pacific Northwest National Laboratory PNNL-21990 (2012).

  24. D.E. Burkes, R. Prabhakaran, J.-F. Jue, and F.J. Rice, Metall. Mater. Trans. A 40, 1069 (2009).

    Article  Google Scholar 

  25. G. Beghi, Gamma Phase Uranium-Molybdenum Fuel Alloys (Ispra: European Atomic Energy Community, Joint Nuclear Research Center, 1968).

    Google Scholar 

  26. C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 properties relevant to N. S. Savannah reactor design, Oak Ridge National Laboratory ORNL-3281 (1962).

  27. D.E. Burkes, C.A. Papesch, A.P. Maddison, T. Hartmann, and F.J. Rice, J. Nucl. Mater. 403, 160 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, Z., Soulami, A. et al. Modeling Early-Stage Processes of U-10 Wt.%Mo Alloy Using Integrated Computational Materials Engineering Concepts. JOM 69, 2532–2537 (2017). https://doi.org/10.1007/s11837-017-2608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2608-z

Navigation