Skip to main content
Log in

Novel PLA-Based Conductive Polymer Composites for Biomedical Applications

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the electrical conductivity of polylactic acid (PLA)-based composites has been improved using polyaniline (PANI) with two different solvents: dodecylbenzene sulfonic acid and citric acid. The effects of various factors including PLA quantity, solvent concentration, type of solvent and thickness on the resistivity were investigated using the design of experiments. The experimental plan was based on irregular fraction design to develop the regression models. The results revealed that the proposed mathematical models were sufficient and could describe the performance of resistivity of PLA within the limits of a factor. The findings also indicated that thickness had the most significant effect on the resistivity of PLA, while the effect of the type of solvent was of least significance. Moreover, it was illustrated that, by incorporating two different solvents into PANI, the resistivity could be changed for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P.K. Bajpai, I. Singh, and J. Madaan, Wear 297, 829 (2013).

    Article  Google Scholar 

  2. M. Murariu and P. Dubois, Adv. Drug Deliv. Rev. 107, 17 (2016).

    Article  Google Scholar 

  3. R.N. Salaway and L.V. Zhigilei, Int. J. Heat Mass Transf. 70, 954 (2014).

    Article  Google Scholar 

  4. S.M.S. Murshed and C.A. Nieto de Castro, Renew. Sustain. Energy Rev. 37, 155 (2014).

    Article  Google Scholar 

  5. M.M. Taheri, M. Rezazadeh Shirdar, A. Keyvanfar, and A. Shafaghat, J. Exp. Nanosci. 12, 83 (2016).

    Article  Google Scholar 

  6. M. Rezazadeh Shirdar, I. Sudin, M.M. Taheri, A. Keyvanfar, M.Z.M. Yusop, and M.R.A. Kadir, Vacuum 122, 82 (2015).

    Article  Google Scholar 

  7. H. Yoshikawa, T. Hino, and N. Kuramoto, Synth. Met. 156, 1187 (2006).

    Article  Google Scholar 

  8. A.A. Athawale, S.V. Bhagwat, and P.P. Katre, Sensors Actuators B Chem. 114, 263 (2006).

    Article  Google Scholar 

  9. L. Tarachiwin, P. Kiattibutr, L. Ruangchuay, A. Sirivat, and J. Schwank, Synth. Met. 129, 303 (2002).

    Article  Google Scholar 

  10. P.K. Kahol, A.J. Dyakonov, and B.J. McCormick, Synth. Met. 89, 17 (1997).

    Article  Google Scholar 

  11. S.R. White, Phys. Rev. B 53, 52 (1996).

    Article  Google Scholar 

  12. Z. Han and A. Fina, Prog. Polym. Sci. 36, 914 (2011).

    Article  Google Scholar 

  13. P. Zhang, W. Hong, J.F. Wu, G.Z. Liu, J. Xiao, Z.B. Chen, and H.B. Cheng, Energy Procedia 69, 699 (2015).

    Article  Google Scholar 

  14. M. Xing, J. Yu, and R. Wang, Int. J. Heat Mass Transf. 88, 609 (2015).

    Article  Google Scholar 

  15. M.M. Taheri, M.R. Abdul Kadir, N.K. Ahmad Shafiai, T. Shokuhfar, M. Assadian, and M.R. Shirdar, Trans. Nonferrous Met. Soc. China 25, 3286 (2015).

    Article  Google Scholar 

  16. A. Habibolahzadeh, A. Hassani, E. Bagherpour, and M. Taheri, J. Compos. Mater. 48, 1049 (2014).

    Article  Google Scholar 

  17. M.T. Byrne and Y.K. Gun’ko, Adv. Mater. 22, 1672 (2010).

    Article  Google Scholar 

  18. D.C. Montgomery, Design and Analysis of Experiments (Hoboken: Wiley, 2008).

    Google Scholar 

  19. E. Rozet, P. Lebrun, P. Hubert, B. Debrus, and B. Boulanger, TrAC. Trends Anal. Chem. 42, 157 (2013).

    Article  Google Scholar 

  20. M.R. Shirdar, A. Golshan, S. Izman, and D. Ghodsiyeh, J. Mater. Eng. Perform. 23, 13 (2014).

    Article  Google Scholar 

  21. G.D. Khuspe, D.K. Bandgar, S. Sen, and V.B. Patil, Synth. Met. 162, 1822 (2012).

    Article  Google Scholar 

  22. M. Assadian, M.R. Shirdar, M.H. Idris, S. Izman, D. Almasi, M.M. Taheri, and M.R.A. Kadir, Arab. J. Sci. Eng. 40, 923 (2015).

    Article  Google Scholar 

  23. M.R. Shirdar, S. Izman, M.M. Taheri, M. Assadian, and M.R. Abdul Kadir, Arab. J. Sci. Eng. 41, 591 (2015).

  24. M.Y. Noordin, V.C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, J. Mater. Process. Technol. 145, 46 (2004).

    Article  Google Scholar 

  25. M. Rezazadeh Shirdar, M.M. Taheri, H. Moradifard, A. Keyvanfar, A. Shafaghat, T. Shokuhfar, and S. Izman, Ceram. Int. 42, 6942 (2016).

    Article  Google Scholar 

  26. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001).

    Article  Google Scholar 

  27. M. Farbod, A. Ahangarpour, and S.G. Etemad, Particuology 22, 59 (2015).

    Article  Google Scholar 

  28. A.M. Youssef, S.A. Mohamed, M.S. Abdel-Aziz, M.E. Abdel-Aziz, G. Turky, and S. Kamel, Carbohydr. Polym. 147, 333 (2016).

    Article  Google Scholar 

  29. A.M. Youssef, RSC Adv. 4, 6811 (2014).

    Article  Google Scholar 

  30. M.A.A. El-Ghaffar, A.M. Youssef, and A.A.A. El-Hakim, Arab. J. Chem. 8, 771 (2015).

    Article  Google Scholar 

  31. L.H.C. Mattoso, E.S. Medeiros, D.A. Baker, J. Avloni, D.F. Wood, and W.J. Orts, J. Nanosci. Nanotechnol. 9, 2917 (2009).

    Article  Google Scholar 

  32. A.M. Youssef, M.A. El-Samahy, and M.H. Abdel, Rehim. Carbohydr. Polym. 89, 1027 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziurah Mohd Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.M., Kadir, M.R.A. & Razak, S.I.A. Novel PLA-Based Conductive Polymer Composites for Biomedical Applications. JOM 69, 2838–2843 (2017). https://doi.org/10.1007/s11837-017-2577-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2577-2

Navigation