Skip to main content
Log in

Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity

  • Published:
JOM Aims and scope Submit manuscript

Abstract

As-cast aluminum-7 wt.% ailicon alloy sample rods were re-melted and directionally solidified on Earth which resulted in uniform dendritically aligned arrays. These arrays were then partially back-melted through an imposed, and constant, temperature gradient in the microgravity environment aboard the International Space Station. The mushy zones that developed in the seed crystals were held for different periods prior to initiating directional solidification. Upon return, examination of the initial mushy-zone regions exhibited significant macrosegregation in terms of a solute-depleted zone that increased as a function of the holding time. The silicon (solute) content in these regions was measured on prepared longitudinal sections by electron microprobe analysis as well as by determining the fraction eutectic on several transverse sections. The silicon content was found to increase up the temperature gradient resulting in significant silicon concentration immediately ahead of the mushy-zone tips. The measured macrosegregation agrees well with calculations from a mathematical model developed to simulate the re-melting and holding process. The results, due to processing in a microgravity environment where buoyancy and thermosolutal convection are minimized, serve as benchmark solidification data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In this article, “wt.%” is dropped; so Al- 7 wt.% Si is simply designated as Al-7Si.

References

  1. P. Peng, X. Li, Y. Su, D. Liu, J. Guo, and H. Fu, J. Mater. Sci. 48, 2608 (2013).

    Article  Google Scholar 

  2. S. Fischer, M. Zaloznik, J.M. Seiler, M. Rettenmayr, and H. Combeau, J. Alloys Compd 540, 85 (2012).

    Article  Google Scholar 

  3. D. Liu, X. Li, Y. Su, P. Peng, L. Luo, J. Guo, and H. Fu, Acta Mater. 60, 2679 (2012).

    Article  Google Scholar 

  4. D. Liu, X. Li, Y. Su, L. Luo, B. Zhang, R. Chen, J. Guo, and H. Fu, J. Cryst. Growth 334, 195 (2011).

    Article  Google Scholar 

  5. D. Liu, Y. Su, X. Li, L. Luo, J. Guo, and H. Fu, J. Cryst. Growth 312, 3658 (2010).

    Article  Google Scholar 

  6. Y. Su, D. Liu, X. Li, L. Luo, J. Guo, and H. Fu, J. Cryst. Growth 312, 2441 (2010).

    Article  Google Scholar 

  7. H.N. Thi, G. Reinhart, A. Buffet, T. Schenk, N. Mangelinck-Nol, H. Jung, N. Bergeon, B. Billia, J. Hartwig, and J. Baruchel, J. Cryst. Growth 310, 2906 (2008).

    Article  Google Scholar 

  8. U. Bsenberg, M. Buchmann, and M. Rettenmayr, J. Cryst. Growth 304, 281 (2007).

    Article  Google Scholar 

  9. B. Li, H.D. Brody, and A. Kazimirov, Metall. Mater. Trans. A 37, 1039 (2006).

    Article  Google Scholar 

  10. H.N. Thi, B. Drevet, J. Debierre, D. Camel, Y. Dabo, and B. Billia, J. Cryst. Growth 253, 539 (2003).

    Google Scholar 

  11. D. Benielli, N. Bergeon, H. Jamgotchian, B. Billia, and P. Voge, Phys. Rev. E 65, 051604 (2002).

    Article  Google Scholar 

  12. W.G. Pfann, Zone Melting, 2nd ed. (New York: Wiley, 1966), pp. 268–271.

    Google Scholar 

  13. N.R. Gewecke and T.P. Schulze, J. Fluid Mech. 674, 227 (2011).

    Article  MathSciNet  Google Scholar 

  14. N.R. Gewecke and T.P. Schulze, J. Fluid Mech. 689, 357 (2011).

    Article  MathSciNet  Google Scholar 

  15. G. Salloum Abou Jaoud, G. Reinhart, H. Nguyen-Thi, H. Combeau, M. Zaloznik, T. Schenk, and T. Lafford, C.R. Mec. 341, 421 (2013).

    Article  Google Scholar 

  16. J. Dagner, M. Hainke, and J. Friedrich, SAE [Tech. Pap.], 2005-01-2859 (2005).

  17. M. Ghods, L. Johnson, M. Lauer, R.N. Grugel, and S.N. Tewari, D.R. Poirier. J. Cryst. Growth 441, 107 (2016).

    Article  Google Scholar 

  18. J.L. Murray and J.L. McAlister, Bull. Alloy Phase Diagr. 5, 74 (1984).

    Article  Google Scholar 

  19. D.R. Poirier, Metall. Mater. Trans. B 45, 1 (2014).

    Article  Google Scholar 

  20. S. Fischer and M. Rettenmayr, Int. J. Mater. Res. 102, 1226 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Aeronautics and Space Administration (NASA) Grant NNX08AN49G and NNX14AJ73G. The Al-7% Si alloys for this research were kindly provided by Dr. Men G. Chu at ALCOA Technical Center. M. Lauer would like to acknowledge support from the Sandia National Laboratories Campus Executive Fellowship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauer, M., Ghods, M., Angart, S.G. et al. Macrosegregation During Re-melting and Holding of Directionally Solidified Al-7 wt.% Si Alloy in Microgravity. JOM 69, 1289–1297 (2017). https://doi.org/10.1007/s11837-017-2380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2380-0

Navigation