Skip to main content
Log in

Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The microstructural changes induced by solution treatment of an industrial forged F53 Super Duplex Stainless Steel alloy were studied, in order to emphasize how component phases are influenced by heat treatment temperature and duration. The solution treatment was done at a temperature of 1100°C, with variable holding times: 0.6 ks (10 min), 3.6 ks (60 min) and 10.8 ks (180 min). Scanning electron microscopy–electron backscattered diffraction was used as main characterization technique, to obtain and analyse data referring to microstructural features, such as: nature and morphology of constituent phases, average grain-size and grain misorientation. It was shown that in all studied cases the microstructure consisted of a mixture of about 45% δ-Fe (ferrite) and 55% γ-Fe (austenite). Besides δ-Fe and γ-Fe phases, other phases were also identified, such as τ-phase (chromium-iron carbide), σ-phase (chromium-iron) and δ-(Cr–Fe) (ferrite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.O. Nilsson, Mater. Sci. Technol. 8, 685 (1992).

    Article  Google Scholar 

  2. V. Muthupandi, P. Bala Srinivasan, V. Shankar, S.K. Seshadri, and S. Sundaresan, Mater. Lett. 59, 2305 (2005).

    Article  Google Scholar 

  3. R.B. Bhatt, H.S. Kamat, S.K. Ghosal, and P.K. De, J. Mater. Eng. Perform. 8, 591 (1999).

    Article  Google Scholar 

  4. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, and J. Zhang, Appl. Surf. Sci. 394, 297 (2017).

    Article  Google Scholar 

  5. H.L. Yi, J.H. Ryu, H.K.D.H. Bhadeshia, H.W. Yen, and J.R. Yang, Scr. Mater. 65, 604 (2011).

    Article  Google Scholar 

  6. N. Pettersson, S. Wessman, M. Thuvande, P. Hedström, J. Odqvist, R.F.A. Pettersson, and S. Hertzman, Mater. Sci. Eng. A 647, 241 (2015).

    Article  Google Scholar 

  7. M. Martins and L.C. Casteletti, Mater. Charact. 60, 150 (2009).

    Article  Google Scholar 

  8. K.M. Lee, H.S. Cho, and D.C. Choi, J. Alloys Compd. 285, 156 (1999).

    Article  Google Scholar 

  9. S.S.M. Tavares, J.M. Pardal, J.A. de Souza, J.M. Neto, and M.R. da Silva, J. Alloys Compd. 416, 179 (2006).

    Article  Google Scholar 

  10. M. Sozanska and K. Klyk-Spyra, Mater. Charact. 56, 399 (2006).

    Article  Google Scholar 

  11. H. Luo, C.F. Dong, K. Xiao, and X.G. Li, Appl. Surf. Sci. 258, 631 (2011).

    Article  Google Scholar 

  12. J. Xiong, M.Y. Tan, and M. Forsyth, Desalination 327, 39 (2013).

    Article  Google Scholar 

  13. M. Yousefieh, M. Shamanian, and A. Saatchi, J. Alloys Compd. 509, 782 (2011).

    Article  Google Scholar 

  14. S.S.M. Tavares, V.G. Silva, J.M. Pardal, and J.S. Corte, Eng. Fail. Anal. 35, 88 (2013).

    Article  Google Scholar 

  15. F. Zanotto, V. Grassi, A. Balbo, C. Monticelli, and F. Zucchi, Corros. Sci. 80, 205 (2014).

    Article  Google Scholar 

  16. M. Hoseinpoor, M. Momeni, M. Moayed, and A. Davoodi, Corros. Sci. 80, 197 (2014).

    Article  Google Scholar 

  17. M.A. García-Rentería, V.H. López-Morelos, R. García-Hernández, L. Dzib-Pérez, E.M. García-Ochoa, and J. González-Sánchez, Appl. Surf. Sci. 321, 252 (2014).

    Article  Google Scholar 

  18. S.T. Kim, I.S. Lee, J.S. Kim, S.H. Jang, Y.S. Park, K.T. Kim, and Y.S. Kim, Corros. Sci. 64, 164 (2012).

    Article  Google Scholar 

  19. A.F. Armas, S. Herenu, I. Alvarez-Armas, S. Degallaix, A. Condo´, and F. Lovey, Mater. Sci. Eng. A 491, 434 (2008).

    Article  Google Scholar 

  20. G. Argandona, M.V. Biezma, J.M. Berrueta, C. Berlanga, and A. Ruiz, J. Mater. Eng. Perform. 25, 5269 (2016).

    Article  Google Scholar 

  21. Y. Guo, J. Hu, J. Li, L. Jiang, T. Liu, and Y. Wu, Materials 7, 6604 (2014).

    Article  Google Scholar 

  22. M. Ma, H. Ding, Z. Tang, J. Zhao, Z. Jiang, and G. Fan, J. Iron. Steel Res. Int. 23, 244 (2016).

    Article  Google Scholar 

  23. B. Deng, Y.M. Jiang, J. Gao, and J. Li, J. Alloys Compd. 493, 461 (2010).

    Article  Google Scholar 

  24. H. Tan, Y. Jiang, B. Deng, T. Sun, J. Xu, and J. Li, Mater. Charact. 60, 1049 (2009).

    Article  Google Scholar 

  25. P.D. Southwick, Metal Sci. 16, 475 (1982).

    Article  Google Scholar 

  26. K. Unnikrishnan and A.K. Mallik, Mater. Sci. Eng. A 95, 259 (1987).

    Article  Google Scholar 

  27. L. Duprez, B.D. Cooman, and N. Akdut, Steel Res. 10, 417 (2000).

    Article  Google Scholar 

  28. I. Calliari, E. Ramous, and P. Bassani, Mater. Sci. Forum 638–642, 2986 (2010).

    Article  Google Scholar 

  29. J.M. Pardal, S.S.M. Tavares, M. Cindra Fonseca, J.A. de Souza, R.A.A. Côrte, and H.F.G. de Abreu, Mater. Charact. 60, 165 (2009).

    Article  Google Scholar 

  30. G. Fargas, A. Mestra, and A. Mateo, Wear 303, 584 (2013).

    Article  Google Scholar 

  31. C. Örnek, S.A.M. Idris, P. Reccagni, and D.L. Engelberg, Metals 6, 167 (2016).

    Article  Google Scholar 

  32. N. Llorca-Isern, H. López-Luque, I. López-Jiménez, and M.V. Biezma, Mater. Charact. 112, 20 (2016).

    Article  Google Scholar 

  33. J. Dille, M.C.L. Areiza, S.S.M. Tavares, G.R. Pereira, L.H. De Almeida, and J.M.A. Rebello, J. Magn. Magn. Mater. 426, 102 (2017).

    Article  Google Scholar 

  34. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Mater. Charact. 59, 447 (2008).

    Article  Google Scholar 

  35. J. Nowacki and A. Lukojc, Mater. Charact. 56, 436 (2006).

    Article  Google Scholar 

  36. J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu, and X. Kléber, Micron 84, 43 (2016).

    Article  Google Scholar 

  37. M. Pohl, O. Storz, and T. Glogowski, Mater. Charact. 58, 65 (2007).

    Article  Google Scholar 

  38. X.Z. Liang, M.F. Dodge, W. Liang, and H.B. Dong, Scr. Mater. 127, 45 (2017).

    Article  Google Scholar 

  39. S. Fernandez Bordin, S. Limandri, J.M. Ranalli, and G. Castellano, Ultramicroscopy 171, 177 (2016).

    Article  Google Scholar 

  40. E.J. Chun, H. Baha, K. Terashima, K. Nishimoto, and K. Saida, Weld. Soc. Proc. 31, 168 (2013).

    Google Scholar 

  41. J.W. Christian and S. Mahajan, Prog. Mater Sci. 39, 1 (1995).

    Article  Google Scholar 

  42. Z.Y. Liang and M.X. Huang, J. Mech. Phys. Solids 85, 128 (2015).

    Article  Google Scholar 

  43. W.L. Grube and S.R. Rouze, Can. Metall. Q. 2, 31 (1963).

    Article  Google Scholar 

  44. H. Gleiter, Acta Metall. 17, 1421 (1969).

    Article  Google Scholar 

  45. L. Weber and P.J. Uggowitzer, Mater. Sci. Eng. A 242, 222 (1998).

    Article  Google Scholar 

  46. M. Sadeghian, M. Shamanian, and A. Shafyei, Mater. Des. 60, 678–684 (2014).

    Article  Google Scholar 

  47. J.-O. Nilsson, P. Kangas, A. Wilson, and T. Karlsson, Metall. Mater. Trans. A 31, 35 (2000).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Romanian National Authority for Scientific Research, CCCDI – UEFISCDI, Project PN-III-P2-2.1-BG-2016-0367, Contract No. 104 BG/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Lucia Angelescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cojocaru, V.D., Răducanu, D., Angelescu, M.L. et al. Influence of Solution Treatment Duration on Microstructural Features of an Industrial Forged UNS S32750/1.4410/F53 Super Duplex Stainless Steel (SDSS) Alloy. JOM 69, 1439–1445 (2017). https://doi.org/10.1007/s11837-017-2372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2372-0

Keywords

Navigation