Skip to main content
Log in

Mass Transfer Model for the De-oxidation of Molten Copper

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this paper, we present a mass transfer model that predicts two different mechanisms that control copper de-oxidation: (1) the transport of the reducing gas from the gas bubbles towards the melt/bubble interface, and (2) the transport of dissolved oxygen from the melt towards the melt/bubble interface. The model accounts for gas fluid flow and other process parameters such as lance submergence and nozzle diameter. The model was validated with published data and predictions from our model are in good agreement with the values reported. The key parameters to determine are the mass transfer coefficients of the reducing gas and that of the dissolved oxygen in the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.J. Oudiz, J. Met. 25, 35 (1973).

    Google Scholar 

  2. L. Klein, Trans. Metall. Soc. AIME 224, 121 (1962).

    Google Scholar 

  3. F.E. Brantley and C.H. Schack, Deoxidation of Blister Copper by Gaseous Reduction (Washington, DC: Bureau of Mines, 1962).

    Google Scholar 

  4. R. Henych, F. Kadlec, and V. Sedlacek, J. Met. 17, 386 (1965).

    Google Scholar 

  5. R.J. Andreini, J. Foster, and R.B. Phillips, Metall. Trans. B 8B, 633 (1977).

    Article  Google Scholar 

  6. C.R. Nanda and G.H. Geiger, Metall. Trans. 2, 1101 (1971).

    Article  Google Scholar 

  7. N.J. Themelis and P.R. Schmidt, Trans. Metall. Soc. AIME 239, 1313 (1967).

    Google Scholar 

  8. A. Kikuchi, M. Ayusawa, T. Tadaki, and S. Maeda, J. Japan Inst. Met. 44, 665 (1980).

    Article  Google Scholar 

  9. A. Kikuchi, Y. Yusa, and T. Tadaki, J. Japan Inst. Met. 44, 884 (1980).

    Article  Google Scholar 

  10. B.H. Kang, Y.R. Gwak, and K.Y. Kim, Trans. Indian Inst. Met. 67, 617 (2014).

    Article  Google Scholar 

  11. M. Soltanieh and Y. Karimi, Can. Metall. Q. 44, 429 (2005).

    Article  Google Scholar 

  12. T. Marin, A. Warczok, G. Riveros, T. Utigard, and G. Plascencia, Can. Metall. Q. 46, 379 (2007).

    Article  Google Scholar 

  13. E.B. Ten, I.B. Badmazhapova, and B.M. Kimanov, Steel Transl. 38, 533 (2008).

    Article  Google Scholar 

  14. C. Diaz and F. Richardson, Trans. Intitution Min. Metall. Sect. C 76, C196 (1967).

    Google Scholar 

  15. B. Zhao and N. J. Themelis, in Gas Interact. Nonferrous Met. Process., edited by D. Sata (Anaheim: TMS, 1996), pp. 127–143.

  16. K.E. Oberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp, Metall. Trans. 4, 61 (1973).

    Article  Google Scholar 

  17. P. Taskinen, Acta Polytech. Scand. 145, 1 (1981).

    Google Scholar 

  18. M.T. Clavaguera-Mora, J.L. Touron, J. Rodríguez-Viejo, and N. Clavaguera, J. Alloys Compd. 377, 8 (2004).

    Article  Google Scholar 

  19. B. Hallstedt, D. Risold, and L.J. Gauckler, J. Phase Equilibria 15, 483 (1994).

    Article  Google Scholar 

  20. B. Hallstedt and L.J. Gauckler, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 27, 177 (2003).

    Article  Google Scholar 

  21. R. Schmid, Metall. Trans. B 14B, 473 (1983).

    Article  Google Scholar 

  22. D. Shishin and S.A. Decterov, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 38, 59 (2012).

    Article  Google Scholar 

  23. J.P. Neumann, T. Zhong, and Y.A. Chang, Bull. Alloy Phase Diagrams 5, 136 (1984).

    Article  Google Scholar 

  24. A. Roine, HSC Chemistry 6.1 (Outotec, Finland, 2002).

    Google Scholar 

  25. J.R. Grace, Trans. Inst. Chem. Eng. 51, 116 (1973).

    Google Scholar 

  26. C. Parra de Lazzari and J.D.T. Capocchi, in EPD Congr. 1997, edited by B. Mishra (Orlando, FL: TMS, 1997), pp. 107–118.

  27. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R. Michael Banish, I. Egry, J. Wu, E. Kaschnitz, and W.A. Wakeham, J. Phys. Chem. Ref. Data 39, 033105-1 (2010).

    Article  Google Scholar 

  28. J. Brillo and I. Egry, Int. J. Thermophys. 24, 1155 (2003).

    Article  Google Scholar 

  29. D.A. Harrison, D. Yan, and S. Blairs, Thermodyn. 9, 1111 (1977).

    Article  Google Scholar 

  30. E.M. Sacris and N.A.D. Parlee, Metall. Trans. 1, 3377 (1970).

    Google Scholar 

  31. D.R. Lide, editor, CRC Handbook of Chemistry and Physics, 84th ed. (Boca Raton, FL: CRC Press, 2004).

    Google Scholar 

  32. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 1st ed. (New York: John Wiley, 1960).

    Google Scholar 

  33. K. Ling, Desulphurization of High-Sulphur Blister Copper by Bottom Injection of Air (Toronto, ON: University of Toronto, 2006).

    Google Scholar 

Download references

Acknowledgements

We thank PUMNC, as well as SIP-IPN and COFAA-IPN Grants for conducting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Plascencia.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Damacillo, L., Reyes, F., Ingalls, A. et al. Mass Transfer Model for the De-oxidation of Molten Copper. JOM 69, 980–986 (2017). https://doi.org/10.1007/s11837-017-2356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2356-0

Keywords

Navigation