Skip to main content

Advertisement

Log in

The Emergence of Quantitative Sintering Theory from 1945 to 1955

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Particles flow and pack under stress, allowing shaping of the particles into target engineering geometries. Subsequently, in a process termed sintering, the particles are heated to induce bonding that results in a strong solid. Although first practiced 26,000 years ago, sintering was largely unexplained until recent times. Sintering science moved from an empirical and largely qualitative notion into a quantitative theory over a relatively short time period following World War II. That conceptual transition took place just as commercial applications for sintered materials underwent significant growth. This article highlights the key changes in sintering concepts that occurred in the 1945–1955 time period. This time span starts with the first quantitative neck growth model from Frenkel and ends with the quantitative shrinkage model from Kingery and Berg that includes several transport mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.N. Rhines, Trans. Metall. Soc. AIME 175, 335 (1948).

    Google Scholar 

  2. R.M. German, Sintering: From Empirical Observations to Scientific Principles (Amsterdam: Elsevier, 2014).

    Google Scholar 

  3. W.D. Kingery, in Sintering ‘91, ed. A.C.D. Chaklader and J.A. Lund (Brookfield, VT: Trans Tech, 1992), p. 1.

  4. W.H. Wollaston, Philos. Trans. R. Soc. Lond. 119, 1 (1829).

    Article  Google Scholar 

  5. W.D. Coolidge, Trans. Am. Inst. Elect. Eng. 29, 961 (1910).

    Article  Google Scholar 

  6. K. Schroeter and W. Jenssen, US Patent 1551333, 1925.

  7. T. MacFarlane, US Patent 45597, 1865.

  8. J. Gayley, T. Metall. Soc. AIME 42, 180 (1912).

    Google Scholar 

  9. F.A. Vogel, Sci. Am. 73, 203 (1912).

    Article  Google Scholar 

  10. C. Schnabel, Handbook of Metallurgy (New York, NY: MacMillan, 1898).

    Google Scholar 

  11. W.D. Coolidge, US Patent 1082933, 1913.

  12. C.G. Goetzel, Treatise on Powder Metallurgy, vol. 1 (New York, NY: Interscience, 1949), pp. 259–312.

    Google Scholar 

  13. A.J. Shaler, Trans. Metall. Soc. AIME 185, 796 (1949).

    Google Scholar 

  14. V.V. Skorokhod, Powder Metall. Met. Cer. 53, 529 (2015).

    Article  Google Scholar 

  15. P.E. Wretblad and J. Wulff, in Powder Metallurgy, ed. J. Wulff (Cleveland, OH: American Society for Metals, 1942), p. 36.

    Google Scholar 

  16. G.F. Huttig, Kolloid Z. 98, 6 (1942).

    Article  Google Scholar 

  17. C.G. Goetzel, J. I. Met. 66, 319 (1940).

    Google Scholar 

  18. J. Frenkel, J. Phys. 9, 385 (1945).

    Google Scholar 

  19. B.Y. Pines, Z. Tek. Fiziki 16, 737 (1946).

    Google Scholar 

  20. A.J. Shaler and J. Wulff, Phys. Rev. 72, 79 (1947).

    Article  Google Scholar 

  21. F.V. Lenel, Trans. Metall. Soc. AIME 175, 878 (1948).

    Google Scholar 

  22. G.C. Kuczynski, Trans. Metall. Soc. AIME 185, 169 (1949).

    Google Scholar 

  23. P. Duwez and H. Martens, Trans. Metall. Soc. AIME 185, 572 (1949).

    Google Scholar 

  24. J.K. Mackenzie and R. Shuttleworth, Proc. Phys. Soc. 62, 833 (1949).

    Article  Google Scholar 

  25. C. Herring, J. Appl. Phys. 21, 301 (1950).

    Article  Google Scholar 

  26. A.P. Greenough, Nature 166, 904 (1950).

    Article  Google Scholar 

  27. F.N. Rhines and H.S. Cannon, Trans. Metall. Soc. AIME 191, 529 (1951).

    Google Scholar 

  28. C. Herring, in The Physics of Powder Metallurgy, ed. W.E. Kingston (New York, NY: McGraw-Hill, 1951), p. 143.

  29. H.S. Cannon and F.V. Lenel, in Plansee Proceedings, ed. F. Benesovsky (Reutte, Austria: Metallwerk Plansee, 1953), p. 106.

    Google Scholar 

  30. E.B. Allison and P. Murray, Acta Metall. 2, 487 (1954).

    Article  Google Scholar 

  31. W.D. Kingery and M. Berg, J. Appl. Phys. 26, 1205 (1955).

    Article  Google Scholar 

  32. B.H. Alexander and R. Balluffi, J. Met. 2, 1219 (1950).

    Google Scholar 

  33. G.C. Kuczynski and B.H. Alexander, J. Appl. Phys. 22, 344 (1951).

    Article  Google Scholar 

  34. W.J. Smothers and H.J. Reynolds, J. Am. Ceram. Soc. 37, 588 (1954).

    Article  Google Scholar 

  35. H.H. Hausner, in Symposium on Powder Metallurgy, Special Report 58 (London, UK: Iron and Steel Institute, 1956), p. 102.

  36. B.H. Alexander and R.W. Balluffi, Acta Metall. 5, 666 (1957).

    Article  Google Scholar 

  37. R.L. Coble, J. Am. Ceram. Soc. 41, 55 (1958).

    Article  Google Scholar 

  38. J. Gurland and J.T. Norton, Trans. Metall. Soc. AIME 194, 1051 (1952).

    Google Scholar 

  39. W.D. Kingery, J. Appl. Phys. 30, 301 (1959).

    Article  Google Scholar 

  40. R.M. German, Sintering Theory and Practice (New York, NY: Wiley, 1996).

    Google Scholar 

  41. F.A. Nichols and W.W. Mullins, J. Appl. Phys. 36, 1826 (1965).

    Article  Google Scholar 

  42. S.H. Chung, Y.S. Kwon, S.J. Park, and R.M. German, in Metal Process Simulation, vol. 22B ASM Handbook, ed. D.U. Furrer and S.L. Semiatin (Materials Park, OH: ASM International, 2010), p. 323.

Download references

Acknowledgements

The author’s sintering research is funded by NASA (Grant NNX16AK21G), monitored by Dr. Biliyar Bhat of the Marshall Space Flight Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall M. German.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, R.M. The Emergence of Quantitative Sintering Theory from 1945 to 1955. JOM 69, 630–634 (2017). https://doi.org/10.1007/s11837-016-2242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2242-1

Keywords

Navigation