Skip to main content
Log in

Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles

  • Published:
JOM Aims and scope Submit manuscript

Abstract

It is known that the use of external effects, such as acoustic fields (from ultrasonic to low-frequency range), help in breaking down agglomerates, improving particle wettability, providing uniform particle distribution in the melt volume, and reducing the grain size. The fragmentation of growing crystals, de-agglomeration of particles and their mixing in liquid metal under the influence of vibration (with frequencies of 10–100 Hz) are considered in this paper. The major advantage of such a technique in comparison with high-frequency methods (sonic, ultrasonic) is the capability of processing large melt volumes proportional to the wavelength. The mechanisms of the breaking down of particle agglomerates and the mixing of particles under conditions of cavitation and turbulence during the vibration treatment of the melt are considered. Expressions linking the threshold intensity and frequency with the amplitude necessary to activate mechanisms of turbulence and cavitation were obtained. The results of vibration treatment experiments for an aluminum alloy containing diamond nanoparticles are given. This treatment makes it possible to significantly reduce the grain size and to improve the casting homogeneity and thus improve the mechanical properties of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Vives, JOM 50, 1 (1998).

    Google Scholar 

  2. G.I. Eskin and D.G. Eskin, Ultrasonic Treatment Light Alloy Melts (London: CRC Press, 2014), p. 346.

    Book  Google Scholar 

  3. M.A. Korchagin and D.V. Dudina, Comb. Expl. Shock Waves 43, 176 (2007).

    Article  Google Scholar 

  4. M. Lerner, A. Vorozhtsov, S. Guseinov, and P. Storozhenko, Metal Nanopowders: Production, Characterization, and Energetic Applications, ed. A. Gromov and U. Teipel (New York: Wiley-VCH Verlag GmbH & Co. KGaA, 2014), p. 79.

    Chapter  Google Scholar 

  5. O. Kudryashova and S. Vorozhtsov, JOM 68, 1307 (2016).

    Article  Google Scholar 

  6. M. Estruga, L. Chen, H. Choi, X. Li, and S. Jin, A.C.S. Appl Mater. Interfaces 5, 8813 (2013).

    Article  Google Scholar 

  7. W. Jiang, X. Chen, B. Wang, Z. Fan, and H. Wu, Int. J. Adv. Manuf. Technol. 83, 167 (2016).

    Article  Google Scholar 

  8. F. Taghavi, H. Saghafian, and Y. Kharrazi, Mater. Des. 30, 1604 (2009).

    Article  Google Scholar 

  9. G. Chirita, I. Stefanescu, D. Soares, and F.S. Silva, Mater. Des. 30, 1575 (2009).

    Article  Google Scholar 

  10. A.F. Olufemi and I.S. Ademola, Int. J. Metall. Eng 1, 40 (2012).

    Google Scholar 

  11. S. Vorozhtsov, I. Zhukov, A. Vorozhtsov, A. Zhukov, D. Eskin, and A. Kvetinskaya, Adv. Mater. Sci. Eng 2015, 1 (2015).

    Article  Google Scholar 

  12. I.E. Ignat’ev, E.A. Pastukhov, and E.V. Ignat’eva, Russ. J. Non-Ferr. Met., 6, 509 (2014).

  13. A.D. Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, JOM 66, 872 (2014).

    Article  Google Scholar 

  14. D. Stefanescu, B. Dhindaw, S. Kacar, and A. Moitra, Metall. Trans. A 19, 2847 (1988).

    Article  Google Scholar 

  15. S. Vorozhtsov, V. Kolarik, V. Promakhov, I. Zhukov, A. Vorozhtsov, and V. Kuchenreuther-Hummel, JOM 68, 1312 (2016).

    Article  Google Scholar 

  16. S.A. Vorozhtsov, A.P. Khrustalyov, D.G. Eskin, S.N. Кulkov, and N. Alba-Baena, Russ. Phys. J. 57, 1485 (2015).

    Article  Google Scholar 

  17. S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Trans. A 46A, 2870 (2015).

    Article  Google Scholar 

  18. I.E. Ignat’ev, A.V. Dolmatov, E.V. Ignat’ev, S.A. Istomin, and E.A. Pastukhov, Russ. Metall. (Metally) 12, 97 (2012).

    Article  Google Scholar 

  19. I.S. Grigoryeva and E.Z. Meylikhova, eds., Physical Properties (Moscow: Energoatomizdat, 1981), p. 1232.

    Google Scholar 

  20. S. Vorozhtsov, D. Eskin, A. Vorozhtsov, and S. Kulkov, Light Metals 2014 (Warrendale: TMS, 2014), p. 1373.

    Book  Google Scholar 

  21. A.A. Gromov, S.A. Vorozhtsov, V.F. Komarov, G.V. Sakovich, Y.I. Pautova, and M. Offermann, Mater. Lett. 91, 198 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the Federal Target Program. Agreement No. 14.578.21.0098 (Unique identifier RFMEFI57814X0098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vorozhtsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorozhtsov, S., Kudryashova, O., Promakhov, V. et al. Theoretical and Experimental Investigations of the Process of Vibration Treatment of Liquid Metals Containing Nanoparticles. JOM 68, 3094–3100 (2016). https://doi.org/10.1007/s11837-016-2147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2147-z

Keywords

Navigation