Skip to main content
Log in

Porous CoC2O4 Nanorods as High Performance Anode Material for Lithium Ion Batteries

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A porous structure has great advantages in electrodes for lithium ion batteries (LIBs), because it can not only offer a large surface area for the electrode to contact the electrolyte, but can also relieve the mechanical stress derived from Li+ insertion/extraction. In this work, porous CoC2O4 nanorods were synthesized through a facile metathesis reaction using H2C2O4·2H2O and Co(CH3COO)2·4H2O as raw materials. The porous CoC2O4 nanorods show excellent electrochemical properties including high specific capacity, long cycling stability and good rate capability. After 100 cycles, the electrode maintained a capacity of 1230 mAh g−1 at a current density of 500 mA g−1. Even at a high current density of 4000 mA g−1, the sample still delivered a capacity of 385 mAh g−1. These results indicate that porous CoC2O4 nanorods are an exceptional anode material for high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.G. Bruce, B. Scrosati, and J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    Article  Google Scholar 

  2. M. Armand and J.M. Tarascon, Nature 451, 652 (2008).

    Article  Google Scholar 

  3. M.V. Reddy, G.V. Subba Rao, and B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013).

    Article  Google Scholar 

  4. Z.C. Bai, F. Na, C. Sun, Z. Ju, C. Guo, J. Yang, and Y.T. Qian, Nanoscale 5, 2442 (2013).

    Article  Google Scholar 

  5. M.R. Palacın, Chem. Soc. Rev. 38, 2565 (2009).

    Article  Google Scholar 

  6. Z.C. Bai, N. Fan, Z.C. Ju, C.L. Guo, Y.T. Qian, B. Tang, and S.X. Xiong, J. Mater. Chem. A 1, 10985 (2013).

    Article  Google Scholar 

  7. N. Wang, H.Y. Xu, L. Chen, X. Gu, J. Yang, and Y.T. Qian, J. Power Sources 247, 163 (2014).

    Article  Google Scholar 

  8. N. Wang, X.J. Ma, H.Y. Xu, L. Chen, J. Yue, F.E. Niu, J. Yang, and Y.T. Qian, Nano Energy 6, 193 (2014).

    Article  Google Scholar 

  9. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).

    Article  Google Scholar 

  10. A. Vu, Y.Q. Qian, and A. Stein, Adv. Energy Mater. 2, 1056 (2012).

    Article  Google Scholar 

  11. M.J. Aragon, B. Leon, C. Perez-Vicente, J.L. Tirado, A.V. Chadwick, A. Berko, and S.Y. Beh, Chem. Mater. 21, 1834 (2009).

    Article  Google Scholar 

  12. J.P. Liu, Y.Y. Li, H.J. Fan, Z.H. Zhu, J. Jiang, R.M. Ding, Y.Y. Hu, and X.T. Huang, Chem. Mater. 22, 212 (2010).

    Article  Google Scholar 

  13. L.D. Xing, W.S. Li, C.Y. Wang, F.L. Gu, M.Q. Xu, C.L. Tan, and J. Yi, J. Phys. Chem. B 113, 16596 (2009).

    Article  Google Scholar 

  14. M.J. Aragon, B. Leon, C. Perez-Vicente, and J.L. Tirado, Inorg. Chem. 47, 10366 (2008).

    Article  Google Scholar 

  15. W.A. Ang, N. Gupta, R. Prasanth, and S. Madhavi, A.C.S. Appl. Mater. Interface 4, 7010 (2012).

    Article  Google Scholar 

  16. Z.C. Bai, X.Y. Zhang, Y.W. Zhang, C.L. Guo, and B. Tang, J. Mater. Chem. A 2, 16755 (2014).

    Article  Google Scholar 

  17. Z.C. Bai, Z.C. Ju, C.L. Guo, Y.T. Qian, B. Tang, and S.L. Xiong, Nanoscale 6, 3268 (2014).

    Article  Google Scholar 

  18. N.N. Wang, X.J. Ma, Y.P. Wang, J. Yang, and Y.T. Qian, J. Mater. Chem. A 3, 9550 (2015).

    Article  Google Scholar 

  19. Y.G. Wang, H.Q. Li, P. He, E. Hosono, and H.S. Zhou, Nanoscale 2, 1294 (2010).

    Article  Google Scholar 

  20. M.C. López, J.L. Tirado, and C. Pérez Vicente, J. Power Sources 227, 65 (2013).

    Article  Google Scholar 

  21. A.A. Wei, Y. Ling Cheah, C.L. Wong, P. Raghavan, H.H. Huey, and M. Srinivasan, J. Phys. Chem. C 117, 16316 (2013).

    Article  Google Scholar 

  22. M. Salavati-Niasari, A. Khansari, and F. Davar, Inorg. Chim. Acta 362, 4937 (2009).

    Article  Google Scholar 

  23. Z.C. Bai, Y.W. Zhang, Y.H. Zhang, C.L. Guo, and B. Tang, Electrochim. Acta 159, 29 (2015).

    Article  Google Scholar 

  24. N.N. Wang, L. Chen, X.J. Ma, J. Yue, F. Niu, H. Xu, J. Yang, and Y.T. Qian, J. Mater. Chem. A 2, 16847 (2014).

    Article  Google Scholar 

  25. Y.H. Zhang, Y.W. Zhang, C.L. Guo, B. Tang, X.M. Wang, and Z.C. Bai, Electrochim. Acta 182, 1140 (2015).

    Article  Google Scholar 

  26. Z.C. Bai, Y.H. Zhang, Y.W. Zhang, C.L. Guo, B. Tang, and D. Sun, J. Mater. Chem. A 3, 5266 (2015).

    Article  Google Scholar 

  27. N.N. Wang, Z.C. Bai, Y.T. Qian, and J. Yang, Adv. Mater. 28, 4126 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Committee of Shanxi Province (No. 20110321051), Shanxi Scholarship Council of China (No. 2015-034), Technology Development, China, Project (No. 2011-038) and Natural Science Foundation of China (Grant No. 51301117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongchao Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, Z., Guo, M. et al. Porous CoC2O4 Nanorods as High Performance Anode Material for Lithium Ion Batteries. JOM 68, 2952–2957 (2016). https://doi.org/10.1007/s11837-016-2126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2126-4

Keywords

Navigation