Skip to main content
Log in

The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tungsten (W) is a brittle material at room temperature making it very difficult to fabricate. Although the lack of ductility remains a difficult challenge, nano-sized and ultrafine-grained (UFG) structures offer the potential to overcome tungsten’s room-temperature brittleness. One way to manufacture UFG W is to compact and sinter nano-sized W powder. It is challenging, however, to control grain growth during sintering. As one method to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this study. Addition of 1% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. It was found that sintering in Ar yielded a finer grain size than sintering in H2 at similar densities. The active diffusion mechanisms during sintering were different for W-1% Ti nano powders sintered in Ar and H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Davisa, V. Barabashb, A. Makhankovc, L. Plochld, and L. Slatterya, J. Nucl. Mater. 258, 308 (1998).

    Article  Google Scholar 

  2. G. Janeschitz, J. Nucl. Mater. 290–293, 1 (2001).

    Article  Google Scholar 

  3. P. Norajitra, L. Boccaccini, A. Gervash, R. Giniyatulin, N. Holstein, T. Ihli, G. Janeschitz, W. Krauss, R. Kruessmann, V. Kuznetsov, A. Makhankov, I. Mazul, A. Moeslang, I. Ovchinnikov, M. Rieth, and B. Zeep, J. Nucl. Mater. 367–370, 1416 (2007).

    Article  Google Scholar 

  4. H. Kurishita, S. Kobayashi, K. Nakai, T. Ogawa, A. Hasegawa, K. Abe, H. Arakawa, S. Matsuo, T. Takida, K. Takebe, M. Kawai, and N. Yoshida, J. Nucl. Mater. 377, 34 (2008).

    Article  Google Scholar 

  5. H. Kurishita, H. Arakawa, S. Matsuo, T. Sakamoto, S. Kobayashi, K. Nakai, G. Pintsuk, J. Linke, S. Tsurekawa, V. Yardley, K. Tokunaga, T. Takida, M. Katoh, A. Ikegaya, Y. Ueda, M. Kawai, and N. Yoshida, Mater. Trans. 54, 456 (2013).

    Article  Google Scholar 

  6. R. Nygren, R. Raffray, D. Whye, M. Urickson, M. Baldwin, and L. Snead, J. Nucl. Mater. 417, 451 (2011).

    Article  Google Scholar 

  7. Y. Kitsunai, H. Kurishita, H. Kayano, Y. Hiraoka, T. Igarashi, and T. Takida, J. Nucl. Mater. 271–272, 423 (1999).

    Article  Google Scholar 

  8. P. Sun, E. Cerreta, J.F. Bingert, G. Gray III, and M.F. Hundley, Mater. Sci. Eng. A 464, 343 (2007).

    Article  Google Scholar 

  9. G. Cheng, W. Jian, W. Xu, H. Yuan, P. Millett, and Y. Zhu, Math. Res. Lett. 1, 26 (2013).

    Article  Google Scholar 

  10. H. Kurishita, Y. Amano, S. Kobayashi, K. Nakai, H. Arakawa, Y. Hiraoka, T. Takida, K. Takebe, and H. Matsui, J. Nucl. Mater. 367–370, 1453 (2007).

    Article  Google Scholar 

  11. L. Kevskes, K. Cho, R. Dowding, B. Schuster, R. Valiev, and Q. Wei, Mater. Sci. Eng. 467, 33 (2007).

    Article  Google Scholar 

  12. R. Valiev, R. Islamgaliev, and I. Alexandrov, Prog. Mater Sci. 45, 103 (2000).

    Article  Google Scholar 

  13. Y. Zhang, A. Ganeev, J. Wang, J. Liu, and I. Alexandrov, Mater. Sci. Eng. A 503, 37 (2009).

    Article  Google Scholar 

  14. Q. Wei, H. Zhang, B. Schuster, K. Ramesh, R. Valiev, L. Kecskes, R. Dowding, L. Magness, and K. Cho, Acta Mater. 54, 4079 (2006).

    Article  Google Scholar 

  15. V. Piotter, B. Zeep, P. Norajitra, R. Ruprecht, A. von der Weth, and J. Hausselt, Fusion Eng. Des. 83, 1517 (2008).

    Article  Google Scholar 

  16. H. Wang and Z. Fang, Int. J. Refract. Met. Hard Mater. 28, 312 (2010).

    Article  Google Scholar 

  17. X. Wang, Z. Fang, and M. Koopman, Int. J. Refract. Met. Hard Mater. 53, 134 (2015).

    Article  Google Scholar 

  18. C. Ren, Z. Fang, H. Zhang, and M. Koopman, Int. J. Refract. Met. Hard Mater. (2016).

  19. B. Butler, J. Lu, Z. Fang, and R.K. Rajamani, Int. J. Powder Metall. 43, 35 (2007).

    Google Scholar 

  20. Z. Fang and H. Wang, Int. Mater. Rev. 53, 326 (2008).

    Article  Google Scholar 

  21. G. Messing and M. Kumagai, Am. Ceram. Soc. Bull. 73, 88 (1994).

    Google Scholar 

  22. M. Yan and W. Rhodes, Mater. Sci. Eng. 61, 59 (1983).

    Article  Google Scholar 

  23. R. German, J. Ma, X. Wang, and E. Olevsky, Powder Metall. 49, 19 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the U.S. Department of Energy (DOE) (DESC0008673), Office of Science, Fusion Materials Program and the U.S. Department of Defense (DOD), SBIR program for financial support. The authors also would like to thank Mr. Brady Butler from the Army Research Laboratory for many valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zak Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Koopman, M., Fang, Z.Z. et al. The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti. JOM 68, 2864–2868 (2016). https://doi.org/10.1007/s11837-016-2121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2121-9

Keywords

Navigation