Skip to main content
Log in

Separation of Niobium and Tantalum Pentafluoride by Selective Precipitation Using p-Phenylenediamine

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The similarity between Ta and Nb chemistry makes it difficult to find the appropriate reagents and chemical reactions for the separation of the two elements. This study investigated the precipitation behavior of TaF5 and NbF5 with p-phenylenediamine (PPDA). PPDA preferentially precipitated Nb from a 1:1 ratio of NbF5 and TaF5. Niobium recoveries of >80%, and only 4% Ta, were found in the precipitate of the reaction between (Nb/Ta)F5 and PPDA in ethanol. A separation factor of 100(9) indicated the potential for successful separation of Nb and Ta in a fluoride environment. A spectrophotometric study of the formation ratio of the newly formed Nb compound indicated a 1:1 metal:ligand ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Angulyansky, The Chemistry of Tantalum and Niobium Fluoride Compounds (Amsterdam: Elsevier B.V, 2004).

    Google Scholar 

  2. D.R. Sadoway and S.N. Flengas, Metall. Trans. B 11B, 57 (1980).

    Article  Google Scholar 

  3. M. Nete, W. Purcell, and J.T. Nel, J. Fluor. Chem. 165, 20 (2014).

    Article  Google Scholar 

  4. J.W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Longmans (London: Green & Co. LTD, 1947).

    Google Scholar 

  5. J.R. Werning and K.B. Higbie, Ind. Eng. Chem. 46, 2491 (1954).

    Article  Google Scholar 

  6. L.P. Varga, W.D. Wakley, L.S. Nicolson, M.L. Madden, and J. Patterson, Anal. Chem. 37, 1003 (1965).

    Article  Google Scholar 

  7. W. Kock and P. Paschen, JOM 41, 33 (1989).

    Article  Google Scholar 

  8. X. Wang, S. Zheng, H. Xu, and Y. Zhang, Hydrometallurgy 98, 219 (2009).

    Article  Google Scholar 

  9. H.H. Htwe and K.T. Lwin, World Acad. Sci. Eng. Technol. 46, 133 (2008).

    Google Scholar 

  10. O.N. Grebneva, I.V. Kubrakova, T.F. Kudinova, and N.M. Kuzmin, Spectrochem. Acta B 52, 1151 (1997).

    Article  Google Scholar 

  11. G.E.M. Hall and J.C. Pelchat, J. Anal. Atom. Spectrom. 5, 339 (1990).

    Article  Google Scholar 

  12. M. Nete, W. Purcell, and J.T. Nel, Hydrometallurgy 149, 31 (2014).

    Article  Google Scholar 

  13. M.J. Kabangu and P.L. Crouse, Hydrometallurgy 129–130, 151 (2012).

    Article  Google Scholar 

  14. M.J. Ungerer, D.J. van der Westhuizen, G. Lachmann, and H.M. Krieg, Hydrometallurgy 144–145, 195 (2014).

    Article  Google Scholar 

  15. F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 2nd ed. (New York: Wiley, 1968).

    Google Scholar 

  16. W. He, F. Du, Y. Wu, Y. Wang, X. Liu, H. Liu, and X. Zhao, J. Fluor. Chem. 127, 809 (2006).

    Article  Google Scholar 

  17. D. Deng, P. Deng, X. Wang, and X. Hou, Spectrosc. Lett. 42, 334 (2009).

    Article  Google Scholar 

  18. D.A. Skoog, J.F. Holler, D.M. West, and S.R. Crouch, Fundamentals of Analytical Chemistry, 8th ed. (Australia: Thomson Brooks/Cole, 2004).

    Google Scholar 

  19. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 2nd ed. (New York: Wiley, 1970).

    Google Scholar 

  20. V. Sunitha and B. Muralidhara Reddy, Int. J. Curr. Res. Acad. Rev. 2, 159 (2014).

    Google Scholar 

  21. W. Levason, G. Reid, and W. Zhang, J. Fluorine Chem. 172, 62 (2015).

    Article  Google Scholar 

  22. S.L. Benjamin, A. Hyslop, W. Levason, and G. Reid, J. Fluorine Chem. 137, 77 (2012).

    Article  Google Scholar 

  23. W. Levason, M.E. Light, G. Reid, and W. Zhang, Dalton Trans. 43, 9557 (2014).

    Article  Google Scholar 

  24. F. Marchetti, C. Pinzino, S. Zacchini, and G. Pampaloni, Angew. Chem. Int. 49, 5268 (2010).

    Article  Google Scholar 

  25. J.W. Sibert, United States Patent US 6441164 B2 (Aug 27) (2002).

  26. R. Gross and W. Kaim, Inorg. Chem. 26, 3596 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Research Fund of the University of the Free State, National Research Foundation of South Africa, Necsa and New Metals Development Network of the Advanced Metals Initiative of the Department of Science and Technology of South Africa for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nete, M., Purcell, W. & Nel, J.T. Separation of Niobium and Tantalum Pentafluoride by Selective Precipitation Using p-Phenylenediamine. JOM 68, 2817–2823 (2016). https://doi.org/10.1007/s11837-016-2003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-2003-1

Keywords

Navigation