Skip to main content
Log in

Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.D. Bermúdez, F.J. Carrión, G. Martínez-Nicolás, and R. López, Wear 258, 693 (2005).

    Article  Google Scholar 

  2. M. Roy, V.K. Balla, S. Bose, and A. Bandyopadhyay, Adv. Eng. Mater. 12, B637 (2010).

    Article  Google Scholar 

  3. K.J. Welldon, G.J. Atkins, D.W. Howie, and D.M. Findlay, J. Biomed. Mater. Res. A 84, 691 (2008).

    Article  Google Scholar 

  4. D.M. Findlay, K. Welldon, G.J. Atkins, D.W. Howie, A.C. Zannettino, and D. Bobyn, Biomaterials 25, 2215 (2004).

    Article  Google Scholar 

  5. B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della, J. Valle, and J. Jacobs, Biomaterials 27, 4671 (2006).

    Article  Google Scholar 

  6. H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.M. Kim, and T. Kokubo, J. Biomed. Mater. Res. 53, 28 (2000).

    Article  Google Scholar 

  7. V.K. Balla, S. Bodhak, S. Bose, and A. Bandyopadhyay, Acta Biomater. 6, 3349 (2010).

    Article  Google Scholar 

  8. T. Sjöström, A.S. Brydone, R.D. Meek, M.J. Dalby, B. Su, and L.E. McNamara, Nanomedicine (Lond) 8, 89 (2013).

    Article  Google Scholar 

  9. M. Ramazanoglu and Y. Oshida, in Implant DentistryA Rapidly Evolving Practice, ed. by I. Turkyilmaz (InTech, 2011). doi:10.5772/16936

  10. M.J. Dalby, D. McCloy, M. Robertson, H. Agheli, and D. Sutherland, Biomaterials 27, 2980 (2006).

    Article  Google Scholar 

  11. M.J. Dalby, D. McCloy, M. Robertson, C.D. Wilkinson, and R.O. Oreffo, Biomaterials 27, 1306 (2006).

    Article  Google Scholar 

  12. S. Oh, K.S. Brammer, Y.J. Li, D. Teng, A.J. Engler, S. Chien, and S. Jin, Proc. Natl. Acad. Sci. U.S.A. 106, 2130 (2009).

    Article  Google Scholar 

  13. Y. Song, Y. Ju, G. Song, and Y. Morita, Int. J. Nanomed. 8, 2745 (2013).

    Google Scholar 

  14. G. Mendonça, D.B.S. Mendonça, L.G.P. Simões, A.L. Araújo, E.R. Leite, A.L. Golin, F.J. Aragão, and L.F. Cooper, Mater. Sci. Eng., C 31, 1809 (2011).

    Article  Google Scholar 

  15. J. Park, S. Bauer, K. Von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).

    Article  Google Scholar 

  16. J. Park, S. Bauer, K.A. Schlegel, F.W. Neukam, K. von der Mark, and P. Schmuki, Small 5, 666 (2009).

    Article  Google Scholar 

  17. A.G. Hemmersam, M. Foss, J. Chevallier, and F. Besenbacher, Colloids Surf. B 43, 208 (2005).

    Article  Google Scholar 

  18. C.P. Sharma and W. Paul, J. Biomed. Mater. Res. 26, 1179–1184 (2004).

    Article  Google Scholar 

  19. P. Zhang, S. Wang, S. Wang, and L. Jiang, Small 11, 1939–1946 (2015).

    Article  Google Scholar 

  20. G.F. Muschler, C. Nakamoto, and L.G. Griffith, J. Bone Joint Surg. Am. 86A, 1541 (2004).

    Google Scholar 

  21. M.J. Biggs, R.G. Richards, N. Gadegaard, R.J. McMurray, S. Affrossman, C.D. Wilkinson, R.O. Oreffo, and M.J. Dalby, J. Biomed. Mater. Res. A 91, 195 (2009).

    Article  Google Scholar 

  22. M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D. Wilkinson, and R.O. Oreffo, Nat. Mater. 6, 997 (2007).

    Article  Google Scholar 

  23. D. Khang, J. Choi, Y.M. Im, Y.J. Kim, J.H. Jang, S.S. Kang, T.H. Nam, J. Song, and J.W. Park, Biomaterials 33, 5997 (2012).

    Article  Google Scholar 

  24. K.K. Divine and P.L. Goering, Elements and their Compounds in the Environment, ed. E. Merian, M. Anke, M. Ihnat, and M. Stoeppler (Weinheim: Wiley, 2004), pp. 1087–1097.

  25. J. Black, Clin. Mater. 16, 167 (1994).

    Article  Google Scholar 

  26. A.C. Miller, A.F. Fuciarelli, W.E. Jackson, E.J. Ejnik, C. Emond, S. Strocko, J. Hogan, N. Page, and T. Pellmar, Mutagenesis 13, 643 (1998).

    Article  Google Scholar 

  27. U. Dorn, D. Neumann, and M. Frank, J. Arthroplasty 29, 831 (2014).

    Article  Google Scholar 

  28. H.A. Ching, D. Choudhury, M.J. Nine, and N.A. Abu Osman, Sci. Technol. Adv. Mater. 15, 014402 (2014).

    Article  Google Scholar 

  29. C. Balagna, M.G. Faga, and S. Spriano, J. Nanosci. Nanotechnol. 11, 8994 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Shelby Skoog was supported in part by NSF Award #1136330. The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation. The authors would like to acknowledge Chuck Mooney for assistance with SEM and EDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger J. Narayan.

Additional information

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services. The statements in this article should not be construed as representing official agency policies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoog, S.A., Kumar, G., Goering, P.L. et al. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies. JOM 68, 1672–1678 (2016). https://doi.org/10.1007/s11837-016-1934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1934-x

Keywords

Navigation