Skip to main content
Log in

Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is a very attractive polymer employed as a high performance material. For its high viscosity, dispersion of fillers is considered a critical point in UHMWPE nanocomposites preparation process. Currently, paraffin oil (PO) is used extensively to overcome this issue in an assisted melt-mixing process. In this work, we have prepared nanocomposites based on UHMWPE, carbon nanofiller (CNF) and PO mixed by different mixing methods: magnetic stirring, ball milling (BM), ultrasonic and Mini-Lab extruder (EX). The aim of this work was to check the effect of the dispersion method on the mechanical and thermal features of UHMWPE/CNF nano composites in order to obtain a material with improved mechanical and physical properties. The samples were characterized by calorimetric, density, mechanical tensile and rheological analyses. Experimental results highlighted that the nanocomposites produced by EX and BM exhibits the best dispersion, good filler matrix interaction and had significantly improved mechanical properties compared to pure UHMWPE. For instance, for the BM method, the yield strength improved to 18.6 MPa (+96%), the yield strain improved by 60%, while stress at break improved by 13%. In summary, the EX improved the stiffness while the BM produced better ductility, melting temperature and the crystalline degree of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Aldousiri, A. Shalwan, and C.W. Chin, Adv. Mater. Sci. Eng. 8, 2013 (2013). doi:10.1155/2013/645923.

    Google Scholar 

  2. A.M. Visco, L. Torrisi, N. Campo, U. Emanuele, A. Trifirò, and M. Trimarchi, J. Biomed. Mater. Res., Part B 89B, 55 (2009). doi:10.1002/jbm.b.31187.

    Article  Google Scholar 

  3. D.I. Chukov, A.A. Stepashkin, M.V. Gorshenkov, V.V. Tcherdyntsev, and S.D. Kaloshkin, J. Alloy. Compd. 586, S459 (2014).

    Article  Google Scholar 

  4. S.K. Raghuvanshi, B. Ahmad, Siddhartha, A.K. Srivastava, J.B.M. Krishna, and M.A. Wahab, Nucl. Instrum. Methods Phys. Res. Sect. B 271, 44 (2012).

    Article  Google Scholar 

  5. J.A. Puertolas and S.M. Kurtz, J. Mech. Behavior Biomed. Mater. 39, 129 (2014).

    Article  Google Scholar 

  6. M.C. Evora, J.R. Araujo, E.H.M. Ferreira, B.R. Strohmeier, L.G.A. Silva, and C.A. Achete, Appl. Surf. Sci. 335, 78 (2015).

    Article  Google Scholar 

  7. A. Eitan, K. Jiang, D. Dukes, R. Andrews, and L.S. Schadler, Chem. Mater. 15, 3198 (2003). doi:10.1021/cm020975d.

    Article  Google Scholar 

  8. J. Zhang, in Functional Nanofibers and Their Applications, ed. by Q. Wei (Woodhead Publishing Limited, 2012). doi:10.1533/9780857095640.

  9. M.C. Galetz, T. Bla, H. Ruckdäschel, J.K.W. Sandler, V. Altstädt, and U. Glatzel, J. Appl. Polym. Sci. 104, 4173 (2007).

    Article  Google Scholar 

  10. S. Ge, S. Wang, and X. Huang, Wear 267, 770 (2009).

    Article  Google Scholar 

  11. B.C. Anderson, P.D. Bloom, K.G. Baikerikar, V.V. Sheares, and S.K. Mallapragada, Biomaterials 23, 1761 (2002).

    Article  Google Scholar 

  12. W.J. Wood, R.G. Maguire, and W.H. Zhong, Compos. Part B 42, 584 (2011).

    Article  Google Scholar 

  13. C.F. Zhang, Y.X. Bai, J. Gu, and Y.P. Sun, J. Appl. Polym. Sci. 122, 2442 (2011). doi:10.1002/app.34429.

    Article  Google Scholar 

  14. S. Liu, F. Wang, J. Chen, and Y. Cao, Int. J. Polym. Anal. Charact. 20, 138 (2015).

    Article  Google Scholar 

  15. J. Zuo, Y.M. Zhu, S.M. Liu, Z.J. Jiang, and J.Q. Zhao, Polym. Bull. 58, 711 (2007).

    Article  Google Scholar 

  16. H.T. Chiu and J.H. Wang, J. Appl. Polym. Sci. 70, 1009 (1998).

    Article  Google Scholar 

  17. E.M. Lee, Y.S. Oh, H.S. Ha, and B.K. Kim, Polym. Adv. Technol. 20, 1121 (2009).

    Article  Google Scholar 

  18. Y. Chen, H. Zou, M. Liang, and P. Liu, J. Appl. Polym. Sci. 129, 945 (2013). doi:10.1002/APP.38374.

    Article  Google Scholar 

  19. Y. Chen, H. Zou, Y. Cao, and M. Liang, Polym. Sci. Ser. A 56, 630 (2014).

    Article  Google Scholar 

  20. H.S. Jaggi, B.K. Satapathy, and A.R. Ray, J. Polym. Res. 21, 482 (2014).

    Article  Google Scholar 

  21. H. Ma, X. Chen, B.S. Hsiao, and B. Chu, Polymer 55, 160 (2014).

    Article  Google Scholar 

  22. J.C.M. Suarez and R.S. De Biasi, Polym. Degrad. Stab. 82, 221 (2003).

    Article  Google Scholar 

  23. E. Oral, A.S. Malhi, and O.K. Muratoglu, Biomaterials 27, 917 (2006).

    Article  Google Scholar 

  24. U. Goschel and C. Ulrich, J. Appl. Polym. Sci. 113, 49 (2009).

    Article  Google Scholar 

  25. Y. Chen, Y. Qi, Z. Tai, X. Yan, F. Zhu, and Q. Xue, Eur. Polym. J. 48, 1026 (2012).

    Article  Google Scholar 

  26. N. Campo and A.M. Visco, Int. J. Polym. Anal. Charact. 5, 438 (2010).

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support from Erasmus Mundus through Emmag Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Visco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visco, A., Yousef, S., Galtieri, G. et al. Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques. JOM 68, 1078–1089 (2016). https://doi.org/10.1007/s11837-016-1845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1845-x

Keywords

Navigation