Skip to main content
Log in

Bayer Electrofilter Fines as Potential Se(VI) Adsorbents

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Removal of Se(VI) from an aqueous solution under different conditions was investigated using Bayer electrofilter fines (BEFs), a waste from alumina production, as an adsorbent. Adsorption selenate was studied using batch adsorption experiments as a function of pH (2–12), contact time (0.08–30 h), adsorbent concentration (4–80 g/L), initial selenium concentration (5–203 mg/L), and ionic strength (0–0.1 M NaCl). The results showed that adsorption was significantly affected by pH Se(VI) having the highest affinity for BEFs at pH 3. Sorption Se(VI) reached equilibrium in 4 h. Increasing ionic strength decreased selenate sorption. The adsorption of Se(VI) onto BEFs was found to fit the Langmuir isotherm. Maximum selenium uptake values were calculated as 2.3613 mg/g and 1.5608 mg/g when using adsorbent concentrations of 20 g/L and 40 g/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Tinggi, Toxicol. Lett. 137, 103 (2003).

    Article  Google Scholar 

  2. M.P. Rayman, Br. J. Nutr. 100, 254 (2008).

    Google Scholar 

  3. L. Kunli, X. Lirong, T. Jian’an, W. Douhu, and X. Lianhua, Environ. Geol. 45, 426 (2004).

    Article  Google Scholar 

  4. A.D. Lemly, Ecotoxicol. Environ. Saf. 9, 44 (2004).

    Article  Google Scholar 

  5. M. Lenz and P.N.L. Lens, Sci. Total Environ. 407, 3620 (2008).

    Article  Google Scholar 

  6. T.W. May, J.F. Fairchild, J.D. Petty, M.J. Walther, J. Lucer, M. Delvaux, J. Manring, and M. Armbruster, Environ. Monit. Assess. 137, 213 (2008).

    Article  Google Scholar 

  7. World Health Organization (WHO), Pyriproxyfen in Drinking-water. Background Document for Preparation of WHO Guidelines for Drinking-water Quality (Geneva: World Health Organization (WHO/SDE/WSH/03.04/113), 2003).

  8. J. Torres, V. Pintos, L. Gonzatto, S. Domínguez, C. Kremer, and E. Kremer, Chem. Geol. 288, 32 (2011).

    Google Scholar 

  9. Z.I. González-Acevedo, M.T. Olguín, C.E. Rodríguez-Martínez, and H. Frías-Palos, Water Air Soil Pollut. 223, 4119 (2011).

    Article  Google Scholar 

  10. J. Das, B. Sairam-Patra, N. Baliarsingh, and K.M. Parida, J. Colloid Interf. Sci. 316, 216 (2007).

    Article  Google Scholar 

  11. Q. Luo, T.K. Tsukamoto, K.L. Zamzow, and G.C. Miller, Mine Water Environ. 27, 100 (2008).

    Article  Google Scholar 

  12. S.B. Choi and Y.S. Yun, J. Hazard. Mater. 138, 378 (2006).

    Article  Google Scholar 

  13. E.I. El-Shafey, J. Hazard. Mater. 147, 546 (2007).

    Article  Google Scholar 

  14. H. Hayashi, K. Kanie, K. Shinoda, A. Muramatsu, S. Suzuki, and H. Sasaki, Chemosphere 76, 638 (2009).

    Article  Google Scholar 

  15. K. Mondal, G. Jegadeesan, and S.B. Lalvani, Ind. Eng. Chem. Res. 43, 4922 (2004).

    Article  Google Scholar 

  16. H.M. Knotek-Smith, D.L. Crawford, G. Möller, and R.A. Henson, J. Ind. Microbiol. Biotechnol. 33, 897 (2006).

    Article  Google Scholar 

  17. N. Jordan, H. Foerstendorf, S. Weiß, K. Heim, D. Schild, and V. Brendler, Geochim. Cosmochim. Acta 75, 1519 (2011).

    Article  Google Scholar 

  18. L. Zhang, N. Liu, L. Yang, and Q. Lin, J. Hazard. Mater. 170, 1197 (2009).

    Article  Google Scholar 

  19. V. Mavrov, S. Stamenov, E. Todorova, H. Chmiel, and T. Erwe, Desalination 201, 290 (2006).

    Article  Google Scholar 

  20. Y. Fu, J. Wang, Q. Liu, and H. Zeng, Carbon 77, 710 (2014).

    Article  Google Scholar 

  21. M. Duc, G. Lefevre, and M. Fedoroff, J. Colloid Interf. Sci. 298, 556 (2006).

    Article  Google Scholar 

  22. M. Duc, G. Lefevre, M. Fedoroff, J. Jeanjean, J.V. Rocuchaud, F. Monteil-Rivera, J. Dumonceau, and S. Milonjic, J. Environ. Radioact. 70, 61 (2003).

    Article  Google Scholar 

  23. M. Rovira, J. Giménez, M. Martínez, X. Martínez-Lladó, J. Pablo, V. Martí, and L. Duro, J. Hazard. Mater. 150, 279 (2008).

    Article  Google Scholar 

  24. D. Peak, J. Colloid Interf. Sci. 303, 337 (2006).

    Article  Google Scholar 

  25. J.D. Peak and D.L. Sparks, Environ. Sci. Technol. 36, 1460 (2002).

    Article  Google Scholar 

  26. A.M. Yusof, N.H. Idris, N.A.N.N. Malek, and A.K.H. Word, J. Radioanal. Nucl. Chem. 281, 269 (2009).

    Article  Google Scholar 

  27. C.-H. Wu, S.-L. Lo, and C.-F. Lin, Colloid Surf. A 166, 251 (2000).

    Article  Google Scholar 

  28. S.-L. Lo and T.-Y. Chen, Chemosphere 35, 919 (1997).

    Article  Google Scholar 

  29. K.A. Boult, M.M. Cowper, T.G. Heath, H. Sato, T. Shibutani, and M. Yui, J. Contam. Hydrol. 35, 141 (1998).

    Article  Google Scholar 

  30. Y.T. Chana, W.H. Kuanb, T.Y. Chenc, and M.K. Wanga, Water Res. 43, 4412 (2009).

    Article  Google Scholar 

  31. J.S. Yamani, A.W. Lounsbury, and J.B. Zimmerman, Water Res. 20, 373 (2014).

    Article  Google Scholar 

  32. E.J. Elzinga, Y. Tang, J. McDonald, S. DeSisto, and R.J. Reeder, J. Colloid Interf. Sci. 340, 153 (2009).

    Article  Google Scholar 

  33. N. Jordan, A. Ritter, and H. Foerstendorf, Geochim. Cosmochim. Acta 103, 63 (2012).

    Article  Google Scholar 

  34. D. Peak, U.K. Saha, and P.M. Huang, Soil Sci. Soc. Am. J. 70, 192 (2006).

    Article  Google Scholar 

  35. J.P. Sancho, Aluminium Metallurgy (Dusseldorf: Aluminium Verlag, 1992), p. 63.

    Google Scholar 

  36. J. Ayala, B. Fernandez, J.P. Sancho, and P. Garcia, J. Hazard. Mater. 178, 758 (2010).

    Article  Google Scholar 

  37. M.P. García, M.A. Llavona, J.M. Ayala, L.F. Verdeja, and J.P. Sancho, Aluminium 67, 1013 (1991).

    Google Scholar 

  38. K.-H. Goh and T.-T. Lim, Chemosphere 55, 849 (2004).

    Article  Google Scholar 

  39. A. Walcarius, J. Devoy, and J. Bessiere, Langmuir 20, 6335 (2004).

    Article  Google Scholar 

  40. C. Su and D.L. Suarez, Soil Sci. Soc. Am. J. 64, 101 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, J., Fernández, B. Bayer Electrofilter Fines as Potential Se(VI) Adsorbents. JOM 67, 2727–2732 (2015). https://doi.org/10.1007/s11837-015-1616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1616-0

Keywords

Navigation