Skip to main content
Log in

Large-Scale Three-Dimensional Simulation of Dendritic Solidification Using Lattice Boltzmann Method

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A parallel three-dimensional (3D) lattice Boltzmann (LB)-cellular automaton (CA) model is developed to simulate dendritic growth during solidification of metallic binary alloys. The LB method was used to solve the transport equations and a CA algorithm was employed to capture the solid/liquid interface. The model is capable of simulating the evolution of solidification microstructures containing thousands of dendrites in a macroscale domain with approximately 36 billion grid points. The simulation results for columnar dendrite growth in a 1-mm3 region are presented. The parallel model shows a great scale-up performance on up to 40,000 computing cores and an excellent speed-up performance on up to 1000 cores. The model presented in this article helps to pave the way for direct numerical simulation of solidification microstructures in large macroscale domains as the technique can be efficiently implemented on massively parallel supercomputers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliégue, and K. Madi, Acta Mater. 57, 2300 (2009).

    Article  Google Scholar 

  2. D. Tolnai, P. Townsend, G. Requena, L. Salvo, J. Lendvai, and H.P. Degischer, Acta Mater. 60, 2568 (2012).

    Article  Google Scholar 

  3. H. Nguyen-Thi, L. Salvo, R.H. Mathiesen, L. Arnberg, B. Billia, M. Suery, and G. Reinhart, C. R. Physique 13, 237 (2012).

    Article  Google Scholar 

  4. W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi, Acta Mater. 48, 43 (2000).

    Article  Google Scholar 

  5. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Acta Mater. 57, 941 (2009).

    Article  Google Scholar 

  6. W.L. George and J.A. Warren, J. Comput. Phys. 177, 264 (2002).

    Article  MATH  Google Scholar 

  7. B. Nestler, J. Cryst. Growth 275, e273 (2005).

    Article  Google Scholar 

  8. Z. Guo, J. Mi, and P.S. Grant, J. Comput. Phys. 231, 1781 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Yamanaka, T. Aoki, S. Ogawa, and T. Takaki, J. Cryst. Growth 318, 40 (2011).

    Article  Google Scholar 

  10. T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruyama, A. Nukada, and S. Matsuoka, Paper Presented at the 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC’11 (New York, 2011), pp. 3:1–3:11.

  11. R.S. Qin and H.K.D.H. Bhadeshia, Mater. Sci. Technol. 26, 803 (2010).

    Article  Google Scholar 

  12. B. Jelinek, M. Eshraghi, S. Felicelli, and J.F. Peters, Comput. Phys. Commun. 185, 939 (2013).

    Article  Google Scholar 

  13. B. Jelinek, M. Eshraghi, and S.D. Felicelli, Paper Presented at the 2013 TMS Annual Meeting & Exhibition (San Antonio, 2013).

  14. M. Eshraghi, S.D. Felicelli, and B. Jelinek, J. Cryst. Growth 354, 129 (2012).

    Article  Google Scholar 

  15. M. Eshraghi, B. Jelinek, and S.D. Felicelli, Paper Presented at the 2013 TMS Annual Meeting & Exhibition (San Antonio, TX, 2013).

  16. J. Bhatnagar, E.P. Gross, and M.K. Krook, Phys. Rev. 94, 511 (1954).

    Article  MATH  Google Scholar 

  17. S. Chapman and T.G. Cowling, The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press, 1970).

    Google Scholar 

  18. S. Pan and M. Zhu, Acta Mater. 58, 340 (2010).

    Article  Google Scholar 

  19. J.E. Taylor, Acta Metall. Mater. 40, 1475 (1992).

    Article  Google Scholar 

  20. The HDF Group, Hierarchical Data Format Version 5, http://www.hdfgroup.org/HDF5 (2012).

Download references

Acknowledgements

This work was funded by the National Science Foundation through Grant Number CBET-0931801. The authors also acknowledge The University of Akron; California State University, Los Angeles; and the Center for Advanced Vehicular Systems (CAVS) in Mississippi State University for their sponsorship and XSEDE for providing the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Eshraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshraghi, M., Jelinek, B. & Felicelli, S.D. Large-Scale Three-Dimensional Simulation of Dendritic Solidification Using Lattice Boltzmann Method. JOM 67, 1786–1792 (2015). https://doi.org/10.1007/s11837-015-1446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1446-0

Keywords

Navigation