Skip to main content
Log in

Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Bulk elemental compositions of 74 modern cast bronze sculptures from the collection at the Art Institute of Chicago, the Philadelphia Museum of Art, and the Rodin Museum (Philadelphia, PA) were determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and a handheld x-ray fluorescence (XRF) spectrometer. The elemental compositions of the cast sculptures as measured previously by ICP-OES and presently by XRF are compared: A good match is found between the two methods for the base metal (Cu) and the two majority alloying elements (Zn and Sn). For both ICP-OES and XRF data, when the Zn composition is plotted versus the Sn composition, three discernable clusters are found that are related to the artist, foundry, casting date, and casting method; they consist of (A) high-zinc brass, (B) low-zinc, low-tin brass, and (C) low-zinc, tin bronze. Thus, our study confirms that the relatively fast, nondestructive XRF spectrometry can be used effectively over slower and invasive, but more accurate, ICP-OES to help determine a sculpture’s artist, foundry, date of creation, date of casting, and casting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Dussubieux, Restauro 5, 328 (2007).

    Google Scholar 

  2. L. Dussubieux, Archaeological Chemistry: Analytical Techniques and Archaeological Interpretation, ed. M.D. Glascock, R.J. Speakman, and R.S. Popelka-Filcoff (Washington: American Chemical Society, 2007), pp. 336–348.

    Chapter  Google Scholar 

  3. D. Bourgarit and B. Mille, Meas. Sci. Tech. 14, 1538 (2003).

    Article  Google Scholar 

  4. A. Giumlia-Mair, E.J. Keall, A.N. Shugar, and S. Stock, J. Archaeol. Sci. 29, 195 (2002).

    Article  Google Scholar 

  5. A. Giumlia-Mair, E.J. Keall, S. Stock, and A.N. Shugar, J. Cult. Heritage 1, 35 (2000).

    Article  Google Scholar 

  6. I. Segal, A. Kloner, and I.B. Brenner, J. Anal. At. Spectrom. 9, 737 (1994).

    Article  Google Scholar 

  7. I. Segal and S.A. Rosen, Inst. Archaeo. Metall. Stud. 25, 3 (2005).

    Google Scholar 

  8. R.H. Tykot and S.M.M. Young, Archaeological Chemistry: Organic, Inorganic, and Biochemical Analysis, ed. M.V. OrnaACS Symposium Series 625, (Washington: American Chemical Society, 1996), pp. 116–130.

    Chapter  Google Scholar 

  9. S.M.M. Young, P. Budd, R. Haggerty, and A.M. Pollard, Archaeometry 39, 379 (1997).

    Article  Google Scholar 

  10. M.L. Young, S. Schnepp, F. Casadio, A. Lins, M. Meighan, J.B. Lambert, and D.C. Dunand, Anal. Bioanal. Chem. 395, 171 (2009).

    Article  Google Scholar 

  11. A.N. Shugar and J.L. Mass, Handheld XRF for Art and ArchaeologyStudies in Archaeological Sciences, (Leuven: Leuven University Press, 2012), pp. 1–473.

    Google Scholar 

  12. D. Kosinski, A. Boulton, S. Nash, and O. Shell, Matisse: Painter as Sculptor (New Haven: Yale University Press, 2007), pp. 1–312.

    Google Scholar 

  13. B.B. Considine, Conserving Outdoor Sculpture: The Stark Collection at the Getty Center (Los Angeles: Getty Conservation Institute, 2010), pp. 1–266.

    Google Scholar 

  14. H. Bronk, S. Rohrs, A. Bjeoumikhov, N. Langhoff, J. Schmalz, R. Wedell, H.E. Gorny, A. Herold, and U. Waldschlager, Fresenius J. Anal. Chem. 371, 307 (2001).

    Article  Google Scholar 

  15. M. Ganio, A. Leonard, J. Slavant Plisson, and M. Walton (Paper presented at the ICOMOS Conference Métal à Ciel Ouvert. La Sculpture Metallique d’Exterieur du XIXe au Debut du XXe Siecle, Paris, France, 2014), pp. 136–145.

  16. K. Uhlir, M. Griesser, G. Buzanich, P. Wobrauschek, C. Streli, D. Wegrzynek, A. Markowicz, and E. Chinea-Cano, X-Ray Spectrom. 37, 450 (2008).

    Article  Google Scholar 

  17. D.A. Scott, Copper and Bronze in Art: Corrosion, Colorants, and Conservation (Los Angeles: Getty Publications, 2002), pp. 1–534.

    Google Scholar 

  18. D.A. Scott, Metallography and Microstructure in Ancient and Historic Metals (Singapore: J. Paul Getty Museum, 1991), pp. 1–185.

    Google Scholar 

  19. M.L. Young, F. Casadio, J. Marvin, W.T. Chase, and D.C. Dunand, Archaeometry 52, 1015 (2009).

    Google Scholar 

  20. L. Robbiola and L.-P. Hurtel, Mém. Études Scientif. Rev. Métall. 12, 809 (1991).

    Google Scholar 

  21. L.S. Selwyn, N.E. Binnie, J. Poitras, M.E. Laver, and D.A. Downham, Stud. Conserv. 205, 205 (1996).

    Article  Google Scholar 

  22. A. Adriaens, Spectrochim. Acta Part B 60, 1503 (2005).

    Article  Google Scholar 

  23. D. Smith, Studies in Archaeological Sciences: Handheld XRF for Art and Archaeology, ed. A.N. Shugar and J.L. Mass (Leuven: Leuven University Press, 2012), pp. 37–74.

    Google Scholar 

  24. A. Heginbotham, A. Bezur, M. Bouchard, J.M. Davis, K. Eremin, J.H. Frantz, L. Glinsman, L.-A. Hayek, D. Hook, V. Kantarelou, A.G. Karydas, L. Lee, J. Mass, C. Matsen, B. McCarthy, M. McGath, A. Shugar, J. Sirois, D. Smith, and R.o.J. Speakman (Paper presented at Metal 2010. Proceedings of the International Conference on Metal Conservation, Charleston, SC, 2010), pp. 244–255.

  25. É. Lebon, Dictionnaire des Fondeurs de Bronze d’Art: France 1890–1950 (Perth: Marjon Editions, 2003), pp. 1–291.

    Google Scholar 

Download references

Acknowledgement

This research benefited from the financial support of the Andrew W. Mellon Foundation. The authors thank Francesca Casadio and Suzanne Schnepp (Art Institute of Chicago) for significant contributions to this article and useful discussions, Aniko Bezur (Institute for the Preservation of Cultural Heritage at Yale University) for useful discussions, Andrew Lins and Melissa Meighan (Philadelphia Museum of Art and Rodin Museum) for providing access to sculptures for XRF and ICP-OES measurements, and Juris Sarins (SIPI Metals Corporation) and Phil Meehan (National Bronze and Metals, Inc.) for providing bronze and brass reference materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, M.L., Dunand, D.C. Comparing Compositions of Modern Cast Bronze Sculptures: Optical Emission Spectroscopy Versus x-Ray Fluorescence Spectroscopy. JOM 67, 1646–1658 (2015). https://doi.org/10.1007/s11837-015-1445-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1445-1

Keywords

Navigation