Skip to main content
Log in

Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Process design and implementation in friction-stir welding (FSW) is mostly dependent on empirical information. Basic science of FSW and processing can only be complete when fundamental interrelationships between the process control parameters and response variables and the resulting weld microstructure and properties are established to a reasonable extent. It is known that primary process control parameters such as tool rotation, translation rates, and forge axis force have complicated and interactive relationships to process-response variables such as peak temperature and time at temperature. Of primary influence on the other process-response parameters are temperature and its gradient in the deformation and heat-affected zones. Through a review of pertinent works in the literature and results from boundary condition experiments performed in precipitation-hardening aluminum alloys, this article partially elucidates the nature and effects of temperature transients caused by variation of thermal boundaries in FSW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R Rep. 50, 1 (2005).

    Article  MATH  Google Scholar 

  2. R.S. Mishra, Scripta Mater. 58, 325 (2008).

    Article  Google Scholar 

  3. P.L. Threadgill, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Int. Mater. Rev. 54, 49 (2009).

    Article  Google Scholar 

  4. T.W. Eager, Weld. J. 74 (1995).

  5. K.J. Colligan and R.S. Mishra, Scripta Mater. 58, 327 (2008).

    Article  Google Scholar 

  6. C.H. Martens, U.S. patent 3282748 (1966).

  7. S. Benavides, Y. Li, L.E. Murr, D. Brown, and J.C. McClure, Scripta Mater. 41, 809 (1999).

    Article  Google Scholar 

  8. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, and M. Calabrese, Scripta Mater. 48, 1451 (2003).

    Article  Google Scholar 

  9. T.W. Nelson, R.J. Steel, and W.J. Arbegast, Sci. Technol. Weld. Join. 8, 283 (2003).

    Article  Google Scholar 

  10. J.-Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney, Acta Mater. 51, 713 (2003).

    Article  Google Scholar 

  11. D.C. Hofmann and K.S. Vecchio, Mater. Sci. Eng. A 402, 234 (2005).

    Article  Google Scholar 

  12. L. Fratini, G. Buffa, and R. Shivpuri, Int. J. Adv. Manuf. Technol. 43, 664 (2008).

    Article  Google Scholar 

  13. M. Hosseini and H. Danesh Manesh, Mater. Des. 31, 4786 (2010).

    Article  Google Scholar 

  14. T. Bloodworth (M.S. thesis, Vanderbilt University, 2009).

  15. F. Rui-dong, S. Zeng-qiang, S. Rui-cheng, L. Ying, L. Hui-jie, and L. Lei, Mater. Des. 32, 1 (2011).

    Google Scholar 

  16. K.J. Colligan, U.S. patent 6516992 (11 February 2003).

  17. F. Palm, U.S. patent 6793118 (21 September 2004).

  18. S. Kou and G. Cao, U.S. patent 7078647 (18 July 2006).

  19. G. Kohn, Y. Greenberg, I. Makover, and A. Munitz, Weld. J. 81, 46 (2002).

    Google Scholar 

  20. B. M. Tweedy, W. Arbegast, and C. Allen (Paper presented the 2005 TMS Annual Meeting on Friction Stir Welding and Processing III, 2005), pp. 97–104.

  21. P.C. Sinclair, W.R. Longhurst, C.D. Cox, D.H. Lammlein, A.M. Strauss, and G.E. Cook, Mater. Manufact. Proc. 25, 1283 (2010).

    Article  Google Scholar 

  22. A.H. Lotfi and S. Nourouzi, Int. J. Adv. Manuf. Technol. 73, 1717 (2014).

    Article  Google Scholar 

  23. M.J.C. Rosales, N.G. Alcantara, J. Santos, and R. Zettler, Mater. Sci. Forum 636–637, 459 (2010).

    Article  Google Scholar 

  24. P. Su, A. Gerlich, T.H. North, and G.J. Bendzsak, Sci. Technol. Weld. Join. 11, 163 (2006).

    Article  Google Scholar 

  25. D. Bakavos and P.B. Prangnell, Sci. Technol. Weld. Join. 14, 443 (2009).

    Article  Google Scholar 

  26. Y.S. Sato, M. Urata, and H. Kokawa, Metall. Mater. Trans. A 33, 625 (2002).

    Article  Google Scholar 

  27. P. Upadhyay and A.P. Reynolds, Mater. Sci. Eng. A 527, 1537 (2010).

    Article  Google Scholar 

  28. P. Upadhyay and A.P. Reynolds, Mater. Sci. Eng. A 558, 394 (2012).

    Article  Google Scholar 

  29. M. Moore (M.S. thesis, University of South Carolina, 2007).

  30. P. Upadhyay and A. Reynolds, Metall. Mater. Trans. A 45, 2091 (2014).

    Article  Google Scholar 

  31. D. Rosenthal, Weld. J. 20, 220 (1941).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Center for Friction Stir Processing, which is a National Science Foundation I/UCRC program (Grant No. EEC-0437341). The authors thank Dr. Wei Tang and Daniel Wilhelm, Department of Mechanical Engineering, University of South Carolina, Columbia, SC, for their help in preparing the weld joints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Upadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, P., Reynolds, A.P. Thermal Management in Friction-Stir Welding of Precipitation-Hardened Aluminum Alloys. JOM 67, 1022–1031 (2015). https://doi.org/10.1007/s11837-015-1381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1381-0

Keywords

Navigation