Skip to main content
Log in

Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, the microstructure evolution in the powder-bed electron beam additive manufacturing (EBAM) process is studied using phase-field modeling. In essence, EBAM involves a rapid solidification process and the properties of a build partly depend on the solidification behavior as well as the microstructure of the build material. Thus, the prediction of microstructure evolution in EBAM is of importance for its process optimization. Phase-field modeling was applied to study the microstructure evolution and solute concentration of the Ti-6Al-4V alloy in the EBAM process. The effect of undercooling was investigated through the simulations; the greater the undercooling, the faster the dendrite grows. The microstructure simulations show multiple columnar-grain growths, comparable with experimental results for the tested range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Friedli, J.L. Fife, P.D. Napoli, and M. Rappz, Metall. Mater. Trans. A 44, 5522 (2013).

    Article  Google Scholar 

  2. J.E. Spinelli, B.L. Silva, and A. Garcia, J. Electron. Mater. 43, 1347 (2014).

    Article  Google Scholar 

  3. A.Z. Lorbiecka and B. Šarler, Comput. Mater. Con. 18, 69 (2010).

    Google Scholar 

  4. E.A. Holm and C.C. Battaile, JOM 53, 20 (2001).

    Article  Google Scholar 

  5. N. Xiao, Y. Chen, D. Li, and Y. Li, Sci. China Technol. Sci. 55, 341 (2012).

    Article  Google Scholar 

  6. A.A. Wheeler, W.J. Boettinger, and G.B. McFadden, Phys. Rev. A 45, 7424 (1992).

    Article  Google Scholar 

  7. S.G. Kimand and W.T. Kim, Mater. Sci. Eng. A304–306, 281 (2001).

    Google Scholar 

  8. T. Suzuki, M. Ode, S.G. Kim, and W.T. Kim, J. Cryst. Growth 237–239, 125–131 (2002).

    Article  Google Scholar 

  9. X. Li, J. Guo, Y. Su, S. Wu, and H. Fu, Trans. Nonferrous Met. Soc. China 14, 769 (2005).

    Google Scholar 

  10. K. Oguchiand and T. Suzuki, Mater. Trans. 48, 2280 (2007).

    Article  Google Scholar 

  11. S. Qiang, Y. Zhang, H. Cui, and C. Wang, China Foundry 5, 265 (2008).

    Google Scholar 

  12. V. Fallah, M. Amoorezaei, N. Provatas, S.F. Corbin, and A. Khajepour, Acta Mater. 60, 1633 (2012).

    Article  Google Scholar 

  13. H. Yin and S.D. Felicelli, Acta Mater. 58, 1455 (2010).

    Article  Google Scholar 

  14. W. Tan, N.S. Bailey, and Y.C. Shin, Comput. Mater. Sci. 50, 2573 (2011).

    Article  Google Scholar 

  15. X. Gong, J. Lydon, K. Cooper, and K. Chou, J. Mater. Res. 29, 1951 (2014).

    Article  Google Scholar 

  16. H. Hemmer and Ø. Grong, Sci. Technol. Weld. Join. 4, 219 (1999).

    Article  Google Scholar 

  17. X. Gong, T. Anderson, and K. Chou, Manuf. Rev. 1, 1 (2014).

    Article  Google Scholar 

  18. S.G. Kim and W.T. Kim, Mater. Sci. Eng. A304–306, 281 (2001).

    Article  Google Scholar 

  19. R. Kobayashi, J.A. Warren, and W.C. Carter, Phys. D 140, 141 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  20. S.G. Kim, W.T. Kim, and T. Suzuki, Phys. Rev. E 60, 7186 (1999).

    Article  Google Scholar 

  21. L. Nastac, CFD Modeling and Simulation in Materials Processing (New York: Wiley-TMS, 2012), pp.123–130.

  22. J. Lipton, M.E. Glicksman, and W. Kurz, Mater. Sci. Eng. 65, 57 (1984).

    Article  Google Scholar 

  23. M.F. Zhu and D.M. Stefanescu, Acta Mater. 55, 1741 (2007).

    Article  Google Scholar 

  24. Y. Zhao, R.S. Qin, and D.F. Chen, J. Cryst. Growth 377, 72 (2013).

    Article  Google Scholar 

  25. W.W. Mullins and R.F. Sekerka, J. Appl. Phys. 35, 444 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

The materials presented in this article are supported by NASA, under award No. NNX11AM11A. The author X.G. also thanks the AL EPSCoR GRSP for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xibing Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Chou, K. Phase-Field Modeling of Microstructure Evolution in Electron Beam Additive Manufacturing. JOM 67, 1176–1182 (2015). https://doi.org/10.1007/s11837-015-1352-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1352-5

Keywords

Navigation