Skip to main content
Log in

Changing the Size and Surface Roughness of Polymer Nanospheres Formed Using a Microfluidic Technique

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solid polymer nanospheres with contrasting size and surface roughness were prepared using a V-shaped microfluidic junction device. Polymethysilsesquioxane (PMSQ) polymer dissolved separately in either methanol, or ethanol, or propanol or butanol was used, and the nanospheres produced were collected in distilled water at two different temperatures (23°C and 100°C). Each polymer solution together with a volatile liquid, perfluorohexane, was fed into the inlet channels of the microfluidic device. The process of nanosphere generation was recorded by high-speed camera imaging. Only PMSQ solutions of ethanol and propanol generated well-defined nanospheres. The influence of the solvents and the nanosphere collection temperature on nanosphere size distribution and surface roughness was assessed using scanning electron microscopy, which showed that solvent selection was crucial in tailoring the size distribution of the nanospheres and that the nanospheres collected at 100°C had a noticeably rougher surface. The temperature also helped to vary the size distribution of the nanospheres. Nanospheres containing Evans blue dye were also prepared, and those with a rough surface exhibited a very different dye release profile compared with those having a smooth surface. In fact, the release profile changes due to a size differential can be largely compensated for by having a rough surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Kumari, S.K. Yadav, and S.C. Yadav, Colloids Surf. B 75, 1–18 (2010).

    Article  Google Scholar 

  2. A. Lenshof and T. Laurell, Chem. Soc. Rev. 39, 1203–1217 (2010).

    Article  Google Scholar 

  3. J.P. Frampton, M.L. Shuler, W. Shain, and M.R. Hynd, Cent. Nerv. Syst. Agents Med. Chem. 8, 203–219 (2008).

    Article  Google Scholar 

  4. A.-J. Wang, Y.-P. Lu, and R.-X. Sun, Mater. Sci. Eng., A 460–461, 1–6 (2007).

    Google Scholar 

  5. A.S. Karakoti, L.L. Hench, and S. Seal, JOM 58, 77–82 (2006).

    Article  Google Scholar 

  6. B. Felice, M.P. Prabhakaran, A.P. Rodríguez, and S. Ramakrishna, Mater. Sci. Eng. C 41, 178–195 (2014).

    Article  Google Scholar 

  7. N. Saito, Y. Kagari, and M. Okubo, Langmuir 22, 9397–9402 (2006).

    Article  Google Scholar 

  8. Y. Zhang, H.F. Chan, and K.W. Leong, Adv. Drug Deliv. Rev. 65, 104–120 (2013).

    Article  Google Scholar 

  9. A. Zvonar, J. Kristl, J. Kerc, and P.A. Grabnar, J. Microencapsul. 26, 748–759 (2009).

    Article  Google Scholar 

  10. N.T.K. Thanh and L.A.W. Green, Nano Today 5, 213–230 (2010).

    Article  Google Scholar 

  11. J.-M. Lim, N. Bertrand, P.M. Valencia, M. Rhee, R. Langer, S. Jon, O.C. Farokhzad, and R. Karnik, Nanomedicine 10, 401–409 (2014).

    Article  Google Scholar 

  12. N. Nihant, S. Stassen, C. Grandfils, R. Jérome, P. Teyssié, and G. Goffinet, Polym. Int. 34, 289–299 (1994).

    Article  Google Scholar 

  13. S. De Koker, R. Hoogenboom, and B.G. De Geest, Chem. Soc. Rev. 41, 2867–2884 (2012).

    Article  Google Scholar 

  14. I. Kucuk, Z. Ahmad, M. Edirisinghe, and M. Orlu-Gul, Int. J. Pharm. 472, 339–346 (2014).

    Article  Google Scholar 

  15. C.A. Serra and Z. Chang, Chem. Eng. Technol. 31, 1099–1115 (2008).

    Article  Google Scholar 

  16. C.-H. Choi, J.-H. Jung, D.-W. Kim, Y.-M. Chung, and C.-S. Lee, Lab Chip 8, 1544–1551 (2008).

    Article  Google Scholar 

  17. Y. Chen, G.G.Z. Zhang, J. Neilly, K. Marsh, D. Mawhinney, and Y.D. Sanzgiri, Int. J. Pharm. 286, 69–80 (2004).

    Article  Google Scholar 

  18. C. Wu, X. Sun, Z. Zhao, Y. Zhao, Y. Hao, Y. Liu, and Y. Gao, Mater. Sci. Eng. C 44, 262–267 (2014).

    Article  Google Scholar 

  19. F. Alexis, Polym. Int. 54, 36–46 (2005).

    Article  Google Scholar 

  20. S. Adiga, L. Curtiss, J. Elam, M. Pellin, C.-C. Shih, C.-M. Shih, S.-J. Lin, Y.-Y. Su, S. Gittard, J. Zhang, and R. Narayan, JOM 60, 26–32 (2008).

    Article  Google Scholar 

  21. M. Enayati, Z. Ahmad, E. Stride, and M. Edirisinghe, J. R. Soc. Interface 7, 667–675 (2010).

    Article  Google Scholar 

  22. I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny, Polym. Degrad. Stab. 95, 2126–2146 (2010).

    Article  Google Scholar 

  23. Y. Song, Q. Sun, T. Zhang, P. Jin, and L. Han, J. Nanopart. Res. 12, 2689–2697 (2010).

    Article  Google Scholar 

  24. L.E. Murr, JOM 58, 23–33 (2006).

    Article  Google Scholar 

  25. Z. Ahmad, E. Stride, and M. Edirisinghe, J. Drug Target. 17, 724–729 (2009).

    Article  Google Scholar 

  26. M. Zou, S. Wang, F. Huang, Z. Zhang, and X. Ge, Polym. Int. 55, 305–311 (2006).

    Article  Google Scholar 

  27. M.W. Chang, E. Stride, and M. Edirisinghe, Langmuir 26, 5115–5121 (2010).

    Article  Google Scholar 

  28. C.-H. Yang, C.-Y. Wang, K.-S. Huang, C.-P. Kung, Y.-C. Chang, and J.-F. Shaw, Int. J. Pharm. 463, 155–160 (2014).

    Article  Google Scholar 

  29. J. Michael Köhler, I. Kraus, J. Faerber, and C. Serra, J Mater Sci 48, 2158–2166 (2013).

    Article  Google Scholar 

  30. E. Kumacheva, S. Xu, Z. Nie, M.S. Seo, P.C. Lewis, and H. Zhang, US Patent 8696952 (2014).

  31. A. Jahn, J.E. Reiner, W.N. Vreeland, D.L. DeVoe, L.E. Locascio, and M. Gaitan, J. Nanopart. Res. 10, 925–934 (2008).

    Article  Google Scholar 

  32. C.J. Luo, M. Nangrejo, and M. Edirisinghe, Polymer 51, 1654–1662 (2010).

    Article  Google Scholar 

  33. K. Pancholi, E. Stride, and M. Edirisinghe, Langmuir 25, 10007–10013 (2009).

    Article  Google Scholar 

  34. S.G. Kapsi and J.W. Ayres, Int. J. Pharm. 229, 193–203 (2001).

    Article  Google Scholar 

  35. I. Kucuk and M. Edirisinghe, J. Nanopart. Res. 16, 1–9 (2014).

    Article  Google Scholar 

  36. C.N. Baroud, F. Gallaire, and R. Dangla, Lab Chip 10, 2032–2045 (2010).

    Article  Google Scholar 

  37. S.T. Knauert, J.F. Douglas, and F.W. Starr, J. Polym. Sci. Part B Polym. Phys. 45, 1882–1897 (2007).

    Article  Google Scholar 

  38. M. Eltayeb, E. Stride, and M. Edirisinghe, Nanotechnology 24, 465604 (2013).

    Article  Google Scholar 

  39. P. Sofokleous, E. Stride, W. Bonfield, and M. Edirisinghe, Mater. Sci. Eng. C 33, 213–223 (2013).

    Article  Google Scholar 

  40. D.S. Yun, H.J. Kim, and J.W. Yoo, Bull. Korean Chem. Soc. 26, 1927 (2005).

    Article  Google Scholar 

  41. J.M. Crane, G. Putz, and S.B. Hall, Biophys. J. 77, 3134–3143 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank The Islamic Development Bank (IDB) Merit Scholarship Programme for High Technology (MSP) for funding Israfil Kucuk’s PhD research at UCL. They are extremely grateful to Professor Paolo Colombo (University of Padova) for his helpful advice regarding the experimental work. They gratefully acknowledge the UK Engineering and Physical Science Research Council and Adrian Walker for providing the Phantom V7 high-speed camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohan Edirisinghe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucuk, I., Edirisinghe, M. Changing the Size and Surface Roughness of Polymer Nanospheres Formed Using a Microfluidic Technique. JOM 67, 811–817 (2015). https://doi.org/10.1007/s11837-015-1343-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1343-6

Keywords

Navigation