Skip to main content
Log in

Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The recognition of inorganic materials by polypeptides is a technologically relevant and scientifically intriguing phenomenon. Several features of the polypeptide determine the affinity for a given surface and, possibly, its selectivity among a set of materials or among various crystal planes of the same material. Different amino acids have different intrinsic affinities for a given surface; the geometrical features of the surface are also relevant in the recognition process. By means of a minimal, analytically solvable thermodynamic model for the polypeptide-surface interaction, we discuss the role of the conformational flexibility in determining affinity and selectivity of polypeptides for surfaces. In particular, the interplay between geometrical matching of polypeptide-surface features and the presence in the polypeptide of amino acids able to bind the target surface is analyzed as a function of the flexibility. A discussion of literature data in the light of this minimal model is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. One letter codes for amino acids mentioned in the text: W: tryptophan; A: alanine; R: arginine; L: leucine; S: serine; I: isoleucine; Q: glutamine; P: proline; Y: tyrosine; M: methionine.

References

  1. M. Sarikaya, Proc. Natl. Acad. Sci. U.S.A. 96, 14183 (1999).

    Article  Google Scholar 

  2. M. Sarikaya, C. Tamerler, K.Y.J. Alex, K. Schulten, and F. Baneyx, Nat. Mater. 2, 577 (2003).

    Article  Google Scholar 

  3. M. Hnilova, C.R. So, E.E. Oren, B.R. Wilson, T. Kacar, C. Tamerler, and M. Sarikaya, Soft Matter 8, 4327 (2012).

    Article  Google Scholar 

  4. M. Hnilova, D. Khatayevich, A. Carlson, E.E. Oren, C. Gresswell, S. Zheng, F. Ohuchi, M. Sarikaya, and C. Tamerler, J. Colloid Interface Sci. 365, 97 (2012).

    Article  Google Scholar 

  5. J.D. Carter and T.H. LaBean, ACS Nano 5, 2200 (2011).

    Article  Google Scholar 

  6. M. Matmor and N. Ashkenasy, J. Mater. Chem. 21, 968 (2011).

    Article  Google Scholar 

  7. J.H. Wei, T. Kacar, C. Tamerler, M. Sarikaya, and D.S. Ginger, Small 689 (2009).

  8. M. Dickerson, K. Sandhage, and R.R. Naik, Chem. Rev. 108, 4935 (2008).

    Article  Google Scholar 

  9. R. Coppage, J.M. Slocik, B.D. Briggs, A.I. Frenkel, H. Heinz, R.R. Naik, and M.R. Knecht, J. Am. Chem. Soc. 133, 12346 (2011).

    Article  Google Scholar 

  10. L. Ruan, H. Ramezani-Dakhel, C. Chiu, E. Zhu, Y. Li, H. Heinz, and Y. Huang, Nano Lett. 13, 840 (2013).

    Article  Google Scholar 

  11. K. Goede, P. Busch, and M. Grundmann, Nano Lett. 4, 2115 (2004).

    Article  Google Scholar 

  12. C. Tamerler, M. Duman, E. Oren, M. Gungormus, X. Xiong, T. Kacar, B.A. Parviz, and M. Sarikaya, Small 98195, 1372 (2006).

    Article  Google Scholar 

  13. A. Artzy Schnirman, E. Zahavi, H. Yeger, R. Rosenfeld, I. Benhar, Y. Reiter, and U. Sivan, Nano Lett. 6, 1870 (2006).

  14. A. Artzy-Schnirman, E. Abu-Shah, M. Dishon, H. Soifer, Y. Sivan, Y. Reiter, I. Benhar, and U. Sivan, J. Pept. Sci. 446 (2014).

  15. S. Brown, Proc. Natl. Acad. Sci. U.S.A. 89, 8651 (1992).

    Article  Google Scholar 

  16. L. Addadi, N. Rubin, L. Scheffer, and R. Ziblat, Acc. Chem. Res. 41, 254 (2008).

    Article  Google Scholar 

  17. T. Hattori, M. Umetsu, T. Nakanishi, S. Sawai, S. Kikuchi, R. Asano, and I. Kumagai, Bioconjug. Chem. 23, 1934 (2012).

    Article  Google Scholar 

  18. P. Jain, A.A. Soshee, S.S. Narayanan, J. Sharma, C. Girard, E. Dujardin, and C. Nizak, J. Phys. Chem. C 118, 14502 (2014).

    Article  Google Scholar 

  19. O. Cohavi, S. Corni, F. De Rienzo, R. Di Felice, K.E. Gottschalk, M. Hoefling, D. Kokh, E. Molinari, G. Schreiber, A. Vaskevich, and R.C. Wade, J. Mol. Recognit. 23, 259 (2009).

    Google Scholar 

  20. R.A. Latour, Colloids Surf. B 124, 25 (2014).

    Article  Google Scholar 

  21. A.A. Thyparambil, Y. Wei, and R.A. Latour, Langmuir 28, 5687 (2012).

    Article  Google Scholar 

  22. R. Notman and T. Walsh, Langmuir 25, 1638 (2009).

    Article  Google Scholar 

  23. S. Corni, M. Hnilova, C. Tamerler, and M. Sarikaya, J. Phys. Chem. C 117, 16990 (2013).

    Article  Google Scholar 

  24. O. Cohavi, D. Reichmann, R. Abramovich, A.B. Tesler, G. Bellapadrona, D.B. Kokh, R.C. Wade, A. Vaskevich, I. Rubinstein, and G. Schreiber, Chem. Eur. J. 17, 1327 (2011).

    Article  Google Scholar 

  25. B. Peelle, E. Krauland, K. Wittrup, and A. Belcher, Langmuir 21, 6929 (2005).

    Article  Google Scholar 

  26. M. Hnilova, E.E. Oren, U.O.S. Seker, B.R. Wilson, S. Collino, J.S. Evans, C. Tamerler, and M. Sarikaya, Langmuir 24, 12440 (2008).

    Article  Google Scholar 

  27. M. Hoefling, F. Iori, S. Corni, and K.-E. Gottschalk, Langmuir 26, 8347 (2010).

    Article  Google Scholar 

  28. R. Pandey, H. Heinz, J. Feng, B.L. Farmer, J.M. Slocik, L.F. Drummy, and R.R. Naik, Phys. Chem. Chem. Phys. 11, 1989 (2009).

    Article  Google Scholar 

  29. J. Feng, R.B. Pandey, R.J. Berry, B.L. Farmer, R.R. Naik, and H. Heinz, Soft Matter 7, 2113 (2011).

    Article  Google Scholar 

  30. J. Palafox-Hernandez, Z. Tang, Z.E. Hughes, Y. Li, M.T. Swihart, P.N. Prasad, T.R. Walsh, and M.R. Knecht, Chem. Mater. 26, 4960 (2014).

    Article  Google Scholar 

  31. P.E. Wright and H.J. Dyson, Curr. Opin. Struct. Biol. 19, 31 (2009).

    Article  Google Scholar 

  32. Z. Tang, J.P. Palafox-Hernandez, W.-C. Law, Z.E. Hughes, M.T. Swihart, P.N. Prasad, M.R. Knecht, and T.R. Walsh, ACS Nano 7, 9632 (2013).

    Article  Google Scholar 

  33. R.A. Latour, J. Biomed. Mater. Res. A 1 (2014).

  34. W. Norde, Colloids and Interfaces in Life Sciences and Bionanotechnology (Boca Raton, FL: Taylor & Francis, 2011).

    Google Scholar 

  35. J. Yu, M.L. Becker, and G.A. Carri, Langmuir 28, 1408 (2012).

    Article  Google Scholar 

  36. M.J. Penna, M. Mijajlovic, and M.J. Biggs, J. Am. Chem. Soc. 136, 5323 (2014).

    Article  Google Scholar 

  37. Wolfram Research, “Mathematica Version 6.0” (Champaign, IL: Wolfram Research, Inc., 2007).

  38. H. Heinz, B.L. Farmer, R.B. Pandey, J.M. Slocik, S.S. Patnaik, R. Pachter, and R. Naik, J. Am. Chem. Soc. 131, 9704 (2009).

    Article  Google Scholar 

  39. J. Schneider and L. Colombi Ciacchi. J. Am. Chem. Soc. 134, 2407 (2012).

    Article  Google Scholar 

  40. E.E. Oren, C. Tamerler, D. Sahin, M. Hnilova, U. Ozgur, S. Seker, M. Sarikaya, and R. Samudrala, Bioinformatics 23, 2816 (2007).

    Article  Google Scholar 

  41. E.E. Oren, R. Notman, I.W. Kim, J.S. Evans, T.R. Walsh, R. Samudrala, C. Tamerler, and M. Sarikaya, Langmuir 26, 11003 (2010).

    Article  Google Scholar 

  42. M. Bachmann, K. Goede, A.G. Beck-Sickinger, M. Grundmann, A. Irbäck, and W. Janke, Angew. Chem. Int. Ed. Engl. 49, 9530 (2010).

    Article  Google Scholar 

  43. L.B. Wright, P.M. Rodger, S. Corni, and T.R. Walsh, J. Chem. Theory Comput. 9, 1616 (2013).

    Article  Google Scholar 

  44. L.B. Wright, P.M. Rodger, T.R. Walsh, and S. Corni, J. Phys. Chem. C 117, 24292 (2013).

    Article  Google Scholar 

  45. M. Hoefling, K.-E. Gottschalk, S. Monti, and S. Corni, PLoS One 6, e20925 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank MIUR under PRIN project 2012A7LMS3_003 and CNR under the flagship project NanoBrain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Corni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corni, S. Affinity and Selectivity of Peptides for Inorganic Materials: A Thermodynamic Discussion of the Role of Conformational Flexibility. JOM 67, 781–787 (2015). https://doi.org/10.1007/s11837-015-1334-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1334-7

Keywords

Navigation