Skip to main content
Log in

Structural and Mechanical Characterization of Thermally Treated Conch Shells

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Seashells are natural nanocomposite armors with an exceptional combination of strength and toughness. Conch shells have a crossed-lamellar structure constructed with aragonite and biopolymer. Thermal treatment uncovered a nanoscale hierarchical structure in shell’s third-order lamellae. Individual third-order lamellae were found to consist of aragonite nanoparticles cemented with biopolymer. The biopolymer renders conch shells joint increase in strength, ductility and fracture energy, and especially the fracture energy increase is more remarkable. The shell’s aragonite transformed to calcite at 407°C and lime at 607°C. The shell’s biopolymer was burned out in the thermal treatment at 310°C, leading to 1.7% mass loss. The crossed-lamellar structure remained in the 500°C thermally treated shell. The 900°C heat treatment destroyed the crossed-lamellar architecture completely. Thermal treatment resulted in reduction in mechanical properties due to the joint effects—burning out of biopolymer, phase transformation, and destruction of structural integrity. The findings advance our understanding of conch shell’s architecture and provide new guidelines for the design and manufacturing of bio-inspired materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.T. Kuhn-Spearing, H. Kessler, E. Chateau, R. Ballarin, A.H. Heuer, and S.M. Spearing, J. Mater. Sci. 31, 6583 (1996).

    Article  Google Scholar 

  2. C. Salinas and D. Kisailus, JOM 65, 473 (2013).

    Article  Google Scholar 

  3. R.O. Ritchie, Nat. Mater. 10, 817 (2011).

    Article  Google Scholar 

  4. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Prog. Mater Sci. 53, 1 (2008).

    Article  Google Scholar 

  5. D.F. Hou, G.S. Zhou, and M. Zheng, Biomaterials 25, 751 (2004).

    Article  Google Scholar 

  6. X.D. Li and P. Nardi, Nanotechnology 15, 211 (2004).

    Article  Google Scholar 

  7. W. Yang, G.P. Zhang, H.S. Liu, and X.W. Li, J. Mater. Sci. Technol. 27, 139 (2011).

    Article  Google Scholar 

  8. S. Kamat, X. Su, R. Ballarini, and A.H. Heuer, Nature 405, 1036 (2000).

    Article  Google Scholar 

  9. H. Kessler, R. Ballarini, R.L. Mullen, L.T. Kuhn, and A.H. Heuer, Comput. Mater. Sci. 5, 157 (1996).

    Article  Google Scholar 

  10. R. Menig, M.H. Meyers, M.A. Meyers, and K.S. Vecchio, Mater. Sci. Eng. A 297, 203 (2001).

    Article  Google Scholar 

  11. H.Z. Li, Z.H. Xu, and X.D. Li, J. Struct. Biol. 184, 409 (2013).

    Article  Google Scholar 

  12. H.Z. Li, Y.H. Yue, X.D. Han, and X.D. Li, Nano Lett. 14, 2578 (2014).

    Article  Google Scholar 

  13. N.M. Neves and J.F. Mano, Mater. Sci. Eng. C 25, 113 (2005).

    Article  Google Scholar 

  14. X.F. Yang, J. Mater. Res. 10, 1485 (1995).

    Article  Google Scholar 

  15. S. Mann, Nature 332, 119 (1988).

    Article  Google Scholar 

  16. S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, and T. Takahashi, Nature 387, 563 (1997).

    Article  Google Scholar 

  17. R. Knitter, C. Odemer, and J. Haubelt, CFI Ceram. Forum Int. 85, 38 (2008).

    Google Scholar 

  18. R. Li, X.Y. Tao, and X.D. Li, J. Mater. Chem. 19, 983 (2009).

    Article  Google Scholar 

  19. R. Li, L.H. Bao, and X.D. Li, CrystEngComm 13, 5858 (2011).

    Article  Google Scholar 

  20. C. Rodriguez-Navarro, E. Ruiz-Agudo, A. Luque, A.B. Rodriguez-Navarro, and M. Ortega-Huertas, Am. Mineral. 94, 578 (2009).

    Article  Google Scholar 

  21. J.W. McTigue and H.R. Wenk, Am. Mineral. 70, 1253 (1985).

    Google Scholar 

  22. D.R. Dasgupta, Mineral. Mag. 33, 924 (1964).

    Article  Google Scholar 

  23. Z.W. Huang and X.D. Li, Mater. Sci. Eng. C 29, 1803 (2009).

    Article  Google Scholar 

  24. A. Singh, S. Dash, M. Kamruddin, P.K. Ajikumar, A.K. Tyagi, V.S. Raghunathan, and B. Raj, J. Am. Ceram. Soc. 85, 927 (2002).

    Article  Google Scholar 

  25. J. Zhao, C. Chen, Y. Liang, and J. Wang, Acta Mech. Sin. 26, 21 (2010).

    Article  Google Scholar 

  26. Y. Liang, J. Zhao, L. Wang, and F.M. Li, Mater. Sci. Eng. A 483–483, 309 (2008).

    Article  Google Scholar 

  27. B.H. Ji and H.J. Gao, J. Mech. Phys. Solids 52, 1963 (2004).

    Article  MATH  Google Scholar 

  28. S. Weiner, W. Traub, and S.B. Parker, Philos. Trans. R. Soc. Lond. B 304, 425 (1984).

    Article  Google Scholar 

  29. Z.H. Xu and X.D. Li, Adv. Funct. Mater. 21, 3883 (2011).

    Article  Google Scholar 

  30. Z.H. Xu, Y.C. Yang, Z.W. Huang, and X.D. Li, Mater. Sci. Eng. C 31, 1852 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

H.L. acknowledges the financial support from China Scholarship Council (No. 2009101000). The authors also thank the EM Center staff members at University of South Carolina for SEM and TEM support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jin, D., Li, R. et al. Structural and Mechanical Characterization of Thermally Treated Conch Shells. JOM 67, 720–725 (2015). https://doi.org/10.1007/s11837-015-1330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1330-y

Keywords

Navigation