Skip to main content
Log in

The Effect of Operational Parameters on the Characteristics of Gas–Solid Flow Inside the COREX Shaft Furnace

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The COREX shaft furnace is of great importance to the whole C-3000 process. There are many problems with the operation of the COREX shaft furnace, especially with gas and burden distribution, that have as yet been little studied. The present work establishes a three-dimensional quarter model. After validation by operating data in Baosteel, the model is used to investigate the gas utilization rate and the metallization rate of the COREX shaft furnace. The parameters, including the reducing gas flow, the volume fraction of gas phase, and the multilayered burden, are systematically investigated. The results show that the reducing gas flow has a great influence on the gas utilization rate and the metallization rate, while the volume fraction of gas phase has a more significant effect on the metallization rate than on the gas utilization rate. In order to obtain a higher metallization rate, the reducing gas flow needs to be adjusted step by step and the volume fraction of gas phase needs to be increased. In addition, ore and coke need to be discharged separately in order to increase the solid metallization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C P,p :

Specific heat capacity of phase p, J kg−1 K−1

d s :

Solid particle diameter, m

E gs :

Volumetric heat flux, J m−3

f s :

Friction coefficient, –

\( \overrightarrow {F}_{\text{gs}} \) :

Gas–solid drag force, N

\( \overrightarrow {F}_{\text{w}} \) :

Wall friction force, N

\( \overrightarrow {g} \) :

Gravitational acceleration, m s−2

H n :

Specific enthalpy of reaction n, J kg−1

H p :

Specific enthalpy of phase p, J kg−1

\( \overline{\overline{I}} \) :

Identity tensor, –

k g :

Thermal conductivity of gas phase, W m−1 K−1

K p :

Equilibrium constant of reaction n, –

M i :

Molecular weight of specie i, kg kmol−1

P :

Pressure, Pa

Prg :

Prandtl number, –

R 1, R 2 :

Diameter of inner and outer wall of annular pipe, m

Res :

Relative Reynolds number based on the diameter of the solid particle, –

R n :

Rate of reduction reaction n, kmol m−3 s−1

S ϕ :

Source term for variable ϕ in Eq. 1

T p :

Temperature of phase p, K

\( \overrightarrow {v}_{\text{p}} \) :

Physical velocity of phase p, m s−1

ε p :

Volume fraction of phase p, –

ρ p :

Density of phase p, kg m−3

ϕ :

General dependent variable in Eq. 1

Γ ϕ :

Diffusion coefficient for variable ϕ in Eq. 1

μ p :

Viscosity of phase p, kg m−1 s−1

φ i :

Mole fraction of specie i, –

\( \overline{\overline{\tau }}_{p} \) :

Stress tensor of phase p, Pa

ωi :

Mass fraction of specie i, –

g:

Gas

s:

Solid

References

  1. S. Wu, Q. Zhou, J. Xu, S. Yang, Y. Du, and L. Zhang, Proc. of 5th Int. Cong. on the Sci. Technol. of Ironmaking, Beijing, 1280 (2009).

  2. X. Liu, G. Pan, G. Wang, and Z. Wen, Energ. Fuel. 25, 5729 (2011).

    Article  Google Scholar 

  3. E. Ottenschlaeger, W. Kepplinger, G. Papst, and R. Hauk, MPT 9, 24 (1986).

    Google Scholar 

  4. A. Eberle, E. Eichberger, C. Bohm, G. Leonard, and H. Wetzling, Iron Steel Eng. 75, 25 (1998).

    Google Scholar 

  5. A. Eberle, D. Siuka, and C. Böhm, Stahl Eisen 126, 31 (2006).

    Google Scholar 

  6. S.C. Lee, M.K. Shin, S. Joo, and J.K. Yoon, ISIJ Int. 39, 319 (1999).

    Article  Google Scholar 

  7. S. Pal and A.K. Lahiri, Metall. Mater. Trans. B 34B, 103 (2003).

    Article  Google Scholar 

  8. G. Pan, X.L. Liu, and Z. Wen, Ironmak. Steelmak. 40, 255 (2013).

    Article  Google Scholar 

  9. P.P. Kumar, Y.S. Rao, K. Chidambaran, and M. Ranjan, Steel Res. Int. 80, 179 (2009).

    Google Scholar 

  10. S. Wu, M. Kou, J. Sun, W. Shen, and K. Du, Steel Res. Int., DOI:10.1002/srin.201300415.

  11. P.P. Kumar, L.M. Garg, and S.S. Gupta, Ironmak. Steelmak. 33, 29 (2006).

    Article  Google Scholar 

  12. P.P. Kumar, D. Gupta, T.K. Naha, and S.S. Gupta, Ironmak. Steelmak. 33, 293 (2006).

    Article  Google Scholar 

  13. P.P. Kumar, A.V.R.P. Dasu, M. Ranjan, and T.K. Naha, Ironmak. Steelmak. 35, 108 (2008).

    Article  Google Scholar 

  14. Y. Qu, Z. Zou, and Y. Xiao, ISIJ Int. 52, 2186 (2012).

    Article  Google Scholar 

  15. P.S. Assis, L. Guo, J. Fang, T.R. Mankhand, and C.F.C. de Assis, Ironmak. Steelmak. 35, 303 (2008).

    Article  Google Scholar 

  16. S. Pal and A.K. Lahiri, Metall. Mater. Trans. B 34B, 115 (2003).

    Article  Google Scholar 

  17. S. Pal and A.K. Lahiri, ISIJ Int. 46, 58 (2006).

    Article  Google Scholar 

  18. S.C. Lee, M.K. Shin, S. Joo, and J.K. Yoon, ISIJ Int. 40, 1073 (2000).

    Article  Google Scholar 

  19. F. Wang, C. Bai, Y. Yu, G. Qiu, and S. Zhang, Ironmak. Steelmak. 36, 590 (2009).

    Article  Google Scholar 

  20. B. Srivastava, S.K. Roy, and P.K. Sen, Metall. Mater. Trans. B 41B, 935 (2010).

    Article  Google Scholar 

  21. N. Wang, X. Xie, Z. Zou, L. Guo, W. Xu, and Y. Zhou, Steel Res. Int. 79, 547 (2008).

    Google Scholar 

  22. H. Li, Z. Luo, Z. Zou, J. Sun, L. Han, and Z. Di, J. Iron. Steel Res. Int. 19, 36 (2012).

    Article  Google Scholar 

  23. W. Li, The 3rd Baosteel Biennial Acad. Conf., Shanghai, A75 (2008).

  24. W. Xu, Y. Guo, and C. Wang, Baosteel Technol. Res. 5, 45 (2011).

    Google Scholar 

  25. K. Luo and M. Jin, Ironmaking 30, 63 (2011).

    Google Scholar 

  26. Q. Zhang, L. Guo, and X. Chen, Proc. of 5th Int. Cong. on the Sci. Technol. of Ironmaking, Beijing, 1230 (2009).

  27. Q. Li, D. Liu, L. Zhang, and Z. Zou, J. Northeast. Univ. (Nat. Sci.) 33, 848 (2012).

  28. Q. Li, M. Feng, and Z. Zou, ISIJ Int. 53, 1365 (2013).

    Article  Google Scholar 

  29. M. Kou, S. Wu, K. Du, W. Shen, J. Sun, and Z. Zhang, ISIJ Int. 53, 1002 (2013).

    Article  Google Scholar 

  30. M. Kou, S. Wu, W. Shen, K. Du, L. Zhang, and J. Sun, ISIJ Int. 53, 2080 (2013).

  31. Q. Hou, M. Samman, J. Li, and A. Yu, ISIJ Int. 54, 1772 (2014).

    Article  Google Scholar 

  32. S. Wu, J. Xu, S. Yang, Q. Zhou, and L. Zhang, ISIJ Int. 50, 1032 (2010).

    Article  Google Scholar 

  33. S. Wu, J. Xu, J. Yagi, X. Guo, and L. Zhang, ISIJ Int. 51, 1344 (2011).

    Article  Google Scholar 

  34. J. Xu, S. Wu, M. Kou, and K. Du, ISIJ Int. 53, 576 (2013).

    Article  Google Scholar 

  35. W. Ying, Y. Sun, Z. Luo, and Z. Zou, China Metall. 22, 13 (2012).

    Google Scholar 

  36. S. Wu, H. Xu, Z. Li, Q. Zhang, and J. Lin, The 3rd Baosteel Biennial Acad. Conf., Shanghai, A102 (2008).

  37. J.D. Anderson, Computational Fluid Dynamic (New York: McGraw-Hill, 1995).

    Google Scholar 

  38. S. Ergun, Chem. Eng. Prog. 48, 89 (1952).

    Google Scholar 

  39. J. Yagi, ISIJ Int. 33, 619 (1993).

    Article  Google Scholar 

  40. J. Chen, T. Akiyama, H. Nogami, J. Yagi, and H. Takahashi, ISIJ Int. 33, 664 (1993).

    Article  Google Scholar 

  41. W.E. Ranz and W.R. Marshall, Chem. Eng. Prog. 48, 141 (1952).

    Google Scholar 

  42. P.R. Austin, H. Nogami, and J. Yagi, ISIJ Int. 37, 458 (1997).

    Article  Google Scholar 

  43. Y. Hara, M. Tsuchiya, and S. Kond, Tetsu-to-Hagané 60, 1261 (1974).

    Google Scholar 

  44. P.R. Austin, H. Nogami, and J. Yagi, ISIJ Int. 37, 748 (1997).

    Article  Google Scholar 

  45. R.H. Perry, D.W. Green, and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, 7th ed. (New York: McGraw-Hill, 1997).

    Google Scholar 

  46. R. Takahashi, Y. Takahashi, J. Yagi, and Y. Omori, Trans. Iron Steel Inst. Jpn. 26, 765 (1986).

    Article  Google Scholar 

  47. E.D. Negri, O.M. Alfano, and M.G. Chiovetta, Ind. Eng. Chem. Res. 34, 4266 (1995).

    Article  Google Scholar 

  48. M. Harasek, C. Jordan, C. Maier, F. Winter, G. Aichinger, C. Feilmayr, and S. Schuster, AICHE Annual Meeting, Salt Lake City, (2007).

  49. W. Sutherland, Philos. Mag. 36, 211 (1893).

    Article  Google Scholar 

  50. J.O. Hirschfelder, R.B. Bird, and E.L. Spotz, J. Chem. Phys. 16, 968 (1948).

    Article  Google Scholar 

  51. A.L. Lindsay and L.A. Bromley, Ind. Eng. Chem. 42, 1508 (1950).

    Article  Google Scholar 

  52. C.R. Wilke, J. Chem. Phys. 18, 517 (1950).

    Article  Google Scholar 

  53. M.J. Kenney, R.J. Sarjant, and M.W. Thring, Br. J. Appl. Phys. 7, 324 (1956).

    Article  Google Scholar 

  54. E.R.G. Eckert and R.M. Drake, Analysis of Heat and Mass Transfer (Tokyo: McGraw-Hill Kogakusha, 1972).

    MATH  Google Scholar 

  55. Baosteel, Operational Reports, private communication, Shanghai, 2011.

  56. ANSYS, Inc., ANSYS FLUENT User’s Guide (Release 13.0), Pennsylvania, 2010.

  57. S.V. Patankar, Numerical Heat Transfer and Fluid Flow (New York: CRC Press, 1980).

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and editors for their comments and suggestions, Dr Jian Xu from Chongqing University for suggestions on this work, Dr. Mark Buck from University of Science and Technology Beijing for correcting language, the National Natural Science Foundation of China (No. U1260202) and the Specialized Research Fund for Doctoral Programs of Higher Education (No. 20120006110002) for their financial support and the China Scholarship Council (CSC) for providing a scholarship for Mr Mingyin Kou to study at the University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyin Kou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, M., Wu, S., Du, K. et al. The Effect of Operational Parameters on the Characteristics of Gas–Solid Flow Inside the COREX Shaft Furnace. JOM 67, 459–466 (2015). https://doi.org/10.1007/s11837-014-1198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1198-2

Keywords

Navigation