Skip to main content

Advertisement

Log in

Low-Density Steels: The Effect of Al Addition on Microstructure and Properties

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Density reduction of automotive steels is needed to reduce fuel consumption, thereby reducing greenhouse gas emissions. Aluminum addition has been found to be effective in making steels lighter. Such an addition does not change the crystal structure of the material. Steels modified with aluminum possess higher strength with very little compromise in ductility. In this work, different compositions of Fe-Al systems have been studied so that the desired properties of the material remain within the limit. A density reduction of approximately 10% has been achieved. The specific strength of optimal Fe-Al alloys is higher than conventional steels such as ultra-low-carbon steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Rana, C. Liu, and R.K. Ray, Scripta Mater. 68, 354 (2013).

    Article  Google Scholar 

  2. R. Rana, C. Liu, and R.K. Ray, Acta Mater. 75, 227 (2014).

    Article  Google Scholar 

  3. R. Rana, C. Liu, and R.K. Ray, Philos. Mag. Lett. 94, 127 (2014).

    Article  Google Scholar 

  4. D.W. Suh and N.J. Kim, Scripta Mater. 68, 337 (2013).

    Article  Google Scholar 

  5. G. Davies, Materials for Automobile Bodies, 2nd ed. (Burlington, MA: Butterworth-Heinemann, 2012).

    Google Scholar 

  6. G. Fromeyer and U. Brüx, Steel Res. Int. 77, 627 (2006).

    Google Scholar 

  7. R.A. Howell and D.C. van Aken, AIST Trans. 6, 193 (2009).

    Google Scholar 

  8. W.K. Choo and J.H. Kim, Acta Mater. 45, 4877 (1997).

    Article  Google Scholar 

  9. S.W. Hwang and J.H. Ji, Mater. Sci. Eng. A 528, 5196 (2011).

    Article  Google Scholar 

  10. A.C. Lilly, S.C. Deevi, and Z.P. Gibbs, Mater. Sci. Eng. A 258, 42 (1998).

    Article  Google Scholar 

  11. I. Gutierrez-Urrutia and D. Raabe, Scripta Mater. 68, 343 (2012).

    Article  Google Scholar 

  12. TCFE7: TCS Steels/Fe-Alloys Database, Version 7.0 Database, Thermo-Calc 3.0.1.

  13. M. Ferrari and L. Lutterotti, J. Appl. Phys. 76, 7246 (1994).

    Article  Google Scholar 

  14. O.N. Senkov and D.B. Miracle, Mater. Res. Bull. 36, 2183 (2001).

    Article  Google Scholar 

  15. G. Frommeyer, E.J. Drewes, and B. Engl, La Revue de Metallurgie 97, 1245 (2000).

    Article  Google Scholar 

  16. M. Yamamoto and S. Taniguchi, Sci. Rep. RITU A8, 193 (1956).

    Google Scholar 

  17. T. Fukuroi and Y. Shibuya, Sci. Rep. RITU A5, 405 (1953).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge a DIST-FST grant for the SEM facility at the Institute of Nano-Science Initiative, Indian Institute of Science. The authors are thankful to Mr. Sashidhara for his help in carrying out the tension tests in INSTRON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyam Suwas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, S., Suwas, S. Low-Density Steels: The Effect of Al Addition on Microstructure and Properties. JOM 66, 1868–1876 (2014). https://doi.org/10.1007/s11837-014-1129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1129-2

Keywords

Navigation