Skip to main content
Log in

Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification

  • Published:
JOM Aims and scope Submit manuscript

Abstract

The formation of structural patterns during metallic solidification is complex and multiscale in nature, ranging from the nanometer scale, where solid–liquid interface properties are important, to the macroscale, where casting mold filling and intended heat transfer are crucial. X-ray and proton imaging can directly interrogate structure, solute, and fluid flow development in metals from the microscale to the macroscale. X-rays permit high spatio-temporal resolution imaging of microscopic solidification dynamics in thin metal sections. Similarly, high-energy protons permit imaging of mesoscopic and macroscopic solidification dynamics in large sample volumes. In this article, we highlight multiscale x-ray and proton imaging of bismuth-tin alloy solidification to illustrate dynamic measurement of crystal growth rates and solute segregation profiles that can be that can be acquired using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Executive Office of the President of the United States, National Science and Technology Council, Materials Genome Initiative for Global Competitiveness, 2011, http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf. Accessed 10 July 2014.

  2. U.S. Department of Energy, From Quanta to the Continuum: Opportunities for Mesoscale Science, A Report for the Basic Energy Sciences Advisory Committee Mesoscale Science Subcommittee, 2012, http://science.energy.gov/~/media/bes/pdf/reports/files/OFMS_rpt.pdf. Accessed 10 July 2014.

  3. G.W. Crabtree and J.L. Sarrao, MRS Bull. 37, 1079 (2012).

    Article  Google Scholar 

  4. R.H. Mathiesen and L. Arnberg, Acta Mater. 53, 947 (2005).

    Article  Google Scholar 

  5. R.H. Mathiesen and L. Arnberg, Mater. Sci. Eng. A 413–414, 283 (2005).

    Article  Google Scholar 

  6. R.H. Mathiesen, L. Arnberg, H. Nguyen-Thi, and B. Billia, JOM 64, 76 (2012).

    Article  Google Scholar 

  7. G. Reinhart, N. Mangelinck-Noël, H. Nguyen-Thi, T. Schenk, J. Gastaldi, B. Billia, P. Pino, J. Härtwig, and J. Baruchel, Mater. Sci. Eng. A 413–413, 384 (2005).

    Article  Google Scholar 

  8. N. Limodin, L. Salvo, E. Boller, M. Suéry, M. Felberbaum, S. Gailliégue, and K. Madi, Acta Mater. 57, 2300 (2009).

    Article  Google Scholar 

  9. A. Bogno, H. Nguyen-Thi, G. Reinhart, B. Billia, and J. Baruchel, Acta Mater. 61, 1303 (2013).

    Article  Google Scholar 

  10. C. Puncreobutr, P.D. Lee, R.W. Hamilton, and A.B. Phillion, JOM 64, 89 (2012).

    Article  Google Scholar 

  11. A.J. Clarke, S.D. Imhoff, J.C. Cooley, B.M. Patterson, W.-K. Lee, K. Fezzaa, A. Deriy, T.J. Tucker, M.R. Katz, P.J. Gibbs, K.D. Clarke, R.D. Field, D.J. Thoma, and D.F. Teter, Emerg. Mater. Res. 2, 1 (2013).

    Article  Google Scholar 

  12. A. Clarke, S. Imhoff, P. Gibbs, J. Cooley, C. Morris, F. Merrill, B. Hollander, F. Mariam, T. Ott, M. Barker, T. Tucker, W.-K. Lee, K. Fezzaa, A. Deriy, B. Patterson, K. Clarke, J. Montalvo, R. Field, D. Thoma, J. Smith, and D. Teter, Sci. Rep. 3, 2020 (2013).

    Google Scholar 

  13. N.S.P. King, E. Ables, K. Adams, K.R. Alrick, J.F. Amann, S. Balzar, P.D. Barnes Jr, M.L. Crow, S.B. Cushing, J.C. Eddleman, T.T. Fife, P. Flores, D. Fujino, R.A. Gallegos, N.T. Gray, E.P. Hartouni, G.E. Hogan, V.H. Holmes, S.A. Jaramillo, J.N. Knudsson, R.K. London, R.R. Lopez, T.E. Mcdonald, J.B. Mcclelland, F.E. Merrill, K.B. Morley, C.L. Morris, F.J. Naivar, E.L. Parker, H.S. Park, P.D. Pazuchanics, C. Pillai, C.M. Riedel, J.S. Sarracino, F.E. Shelley Jr, H.L. Stacy, B.E. Takala, R. Thompson, H.E. Tucker, G.J. Yates, H.-J. Ziock, and J.D. Zumbro, Nucl. Instrum. Methods A 424, 84 (1999).

    Article  Google Scholar 

  14. C.L. Morris, N.S.P. King, K. Kwiatkowski, F.G. Mariam, F.E. Merrill, and A. Saunders, Rep. Prog. Phys. 76, 26 (2013).

    Article  Google Scholar 

  15. P.A. Rigg, C.L. Schwartz, R.S. Hixson, G.E. Hogan, K.K. Kwiatkowski, F.G. Mariam, M. Marr-Lyon, F.E. Merrill, C.L. Morris, P. Rightly, A. Saunders, and D. Tupa, Phys. Rev. B 77, 220101 (2008).

    Article  Google Scholar 

  16. C.T. Mottershead and J.D. Zumbro, Proc. 1997 Part. Accel. Conf., ed. M. Comyn, M.K. Craddock, M. Reiser, and J. Thompson (IEEE, Piscataway, NJ, 1997), pp. 1397–1399.

  17. T. Mottershead, D. Barlow, B. Blind, G. Hogan, A. Jason, F. Merrill, K. Morley, C. Morris, A. Saunders, and R. Valdiviez, Proc. 2003 Part. Accel. Conf., ed. J. Chew (IEEE, Piscataway, NJ, 2003), pp. 702–704.

  18. R. Valdiviez, F. Sigler, D. Barlow, B. Blind, A. Jason, T. Mottershead, J. Gomez, and C. Espinoza, Proc. 2003 Part. Accel. Conf., ed. J. Chew (IEEE, Piscataway, NJ, 2003), pp. 1664–1666.

  19. F.E. Merrill, E. Campos, C. Espinoza, G. Hogan, B. Hollander, J. Lopwz, F.G. Mariam, D. Morley, C.L. Morris, M. Murray, A. Saunders, C. Schwartz, and T.N. Thompson, Rev. Sci. Instrum. 82, 1 (2011).

    Google Scholar 

  20. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D.J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, Nat. Methods 9, 331 (2012).

    Article  Google Scholar 

  21. L.E. Felton, C.H. Raeder, and D.B. Knorr, JOM 45, 28 (1993).

    Article  Google Scholar 

  22. K.A. Jackson, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull (New York: Wiley, 1958), pp. 319–324.

    Google Scholar 

  23. K.A. Jackson, D.R. Uhlmann, and J.D. Hunt, J. Cryst. Growth 1, 1 (1967).

    Article  Google Scholar 

  24. H.W. Kerr and W.C. Winegard, Crystal Growth, ed. H.S. Peiser (Oxford: Pergamon, 1967), p. 179.

    Google Scholar 

  25. M.R. Taylor, R.S. Fidler, and R.W. Smith, J. Cryst. Growth 3–4, 666 (1968).

    Article  Google Scholar 

  26. M.V. Hecht and H.W. Kerr, J. Cryst. Growth 7, 136 (1970).

    Article  Google Scholar 

  27. J.W. Cahn, W.B. Hillig, and G.W. Sears, Acta Metall. 12, 1421 (1964).

    Article  Google Scholar 

  28. J.A. Cahill and A.D. Kirshenbaum, J. Inorg. Nucl. Chem. 25, 501 (1963).

    Article  Google Scholar 

  29. R.A. Khairulin, S.V. Stankus, R.N. Abdullaev, and V.M. Sklyarchuk, High Temp. 48, 206 (2010).

    Article  Google Scholar 

  30. M.J. Assael, A.E. Kalyva, K.D. Antoniadis, R.M. Banish, I. Egry, J. Wu, E. Kaschnitz, and W.A. Wakeham, J. Phys. Chem. Ref. Data 39, 033105 (2010).

    Article  Google Scholar 

  31. Y. Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, and R. Novakovic, Surf. Sci. 605, 1034 (2011).

    Article  Google Scholar 

  32. W.A. Tiller, K.A. Jackson, J.W. Rutter, and B. Chalmers, Acta Metall. 1, 428 (1953).

    Article  Google Scholar 

  33. H. Okamoto, ASM Alloy Phase Diagrams Center (Materials Park, OH: ASM International, 1990).

    Google Scholar 

Download references

Acknowledgements

We thank B.J. Hollander, A. Saunders, C.J. Espinoza, C. Danly, the pRad Team, T.V. Beard, R.W. Hudson, B.S. Folks, D.A. Aragon, T.J. Tucker, J.C. Cooley, and K.D. Clarke (LANL) and A. Deriy (ANL-APS) for providing experimental support. This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) Division of Materials Sciences and Engineering under A.J. Clarke’s Early Career Award. Use of the APS, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under contract no. DE-AC02-06CH11357; x-ray data were collected at the Sector 32-ID-C beamline. We also acknowledge Los Alamos National Security, LLC, operator of the Los Alamos National Laboratory under contract number DE-AC52-06NA25396. This work also benefited from the use of the Proton Radiography Facility, a user facility at the Los Alamos Neutron Science Center at Los Alamos National Laboratory, sponsored primarily by NNSA Science Campaigns.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Clarke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibbs, P.J., Imhoff, S.D., Morris, C.L. et al. Multiscale X-ray and Proton Imaging of Bismuth-Tin Solidification. JOM 66, 1485–1492 (2014). https://doi.org/10.1007/s11837-014-1058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1058-0

Keywords

Navigation