Skip to main content
Log in

Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the current work, three-dimensional mathematical models were developed for the heat transfer and combustion in a W-shape radiant tube burner (RTB) and were solved using Fluent software (ANSYS Inc., Canonsburg, PA). The standard kε model, nonpremixed combustion model, and the discrete ordinate model were used for the modeling of turbulence, combustion, and radiant heat transfer, respectively. In addition, the NO x postprocessor was used for the prediction of the NO emission. A corresponding experiment was performed for the validation of mathematical models. The details of fluid flow, heat transfer, and combustion in the RTB were investigated. Moreover, the effect of the air/fuel ratio (A/F) and air staging on the performance of RTB was studied with the reference indexes including heat efficiency, maximum temperature difference on shell wall, and NO emission at the outlet. The results indicated that a low speed zone formed in the vicinity of the combustion chamber outlet, and there were two relative high-temperature zones in the RTB, one in combustion chamber that favored the flame stability and the other from the main flame in the RTB. The maximum temperature difference was 95.48 K. As the A/F increased, the temperature increased first and then decreased. As the ratio of the primary to secondary air increased, the recirculation zone at the outlet of combustion chamber shrank gradually to disappear, and the flame length was longer and the temperature in flame decreased correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

A/F:

Air/fuel ratio

a :

Absorption coefficient

Cμ, C1, C2, σ k , σ ε :

Constants for kε equations

C g , C d , σ t :

Constants for nonpremixed model

c p :

Thermal capacity (J/kg K)

D :

Diameter of combustion chamber outlet (mm)

D NO :

Molecular diffusivity of NO

d :

Diameter of holes on combustion chamber (mm)

f :

Mixture fraction

G :

Turbulence production term

g i :

Gravity components (m/s2)

H :

Enthalpy (J/mol)

I :

Radiation intensity (W/m2)

k :

Turbulent kinetic energy (m2/s2)

k t :

Thermal conductivity (W/m.K)

M w,NO :

Molecular weight of NO (kg/mol)

n :

Refractive index

P :

Pressure (Pa)

ppm:

Parts per million of mass fraction

p(f) :

Probability density function

R :

Universal gas constant (8.314 J/mol K)

\( \overrightarrow {{\mathbf{r}}} \) :

Position vector

S rad :

Source term of radiative heat transfer

S NO :

NO reaction source term

s :

Path length

\( \overrightarrow {{\mathbf{s}}} \) :

Direction vector

\( \overrightarrow {{\mathbf{s}}}^{{\mathbf{'}}} \) :

Scattering direction vector

T :

Temperature (K)

u i , u j :

Velocity components (m/s)

\( X_{{{\text{O}}_{ 2} }} \) :

Oxygen mole fraction

x i ,x j :

Spatial coordinates (m)

Y :

Mass fraction

Z :

Elemental mass fraction

α, β :

Parameters for beta probability density function

δ ij :

Kronecker symbol

ε :

Turbulent dissipation rate (m2/s3)

μ :

Dynamic viscosity (kg/m s)

μ t :

Turbulent viscosity (kg/m s)

ρ :

Density (kg/m3)

σ :

Stefan-Boltzmann constant (5.669 × 10−8W/m2 K4)

σ s :

Scattering coefficient

τ ij :

Stress tensor (N/m2)

Φ :

Phase function

φ :

General variable

ψ :

Equivalence ratio

Ω :

Solid angle

References

  1. J. Baukal and E. Charles, Industrial Combustion Testing (Boca Raton, FL: CRC Press, 2011).

    Google Scholar 

  2. G. Scribano, G. Solero, and A. Coghe, Exp. Therm. Fluid Sci. 30, 605 (2006).

    Article  Google Scholar 

  3. L.G. Blevins and J.P. Gore, Combust. Sci. Technol. 109, 255 (1995).

    Article  Google Scholar 

  4. C. Chuenchit and S. Jugjai, J. Res. Appl. Mech. Eng. 1, 19 (2012).

    Google Scholar 

  5. H. Ramamurthy, S. Ramadhyani, and R. Viskanta, J. Inst. Energy 67, 90 (1994).

    Google Scholar 

  6. R.F. Harder, R. Viskanta, and S. Ramadhyani, Proc. ASME Nat. Heat Trans. Conf. 1, 67 (1988).

    Google Scholar 

  7. A. Lankhorst and F.M. Velthuis, Transp. Phenom. Combust. 2, 1330 (1995).

    Google Scholar 

  8. F. Mei and H. Meunier, ASME Publ. HTD 341, 109 (1997).

    Google Scholar 

  9. N. Tsioumanis, J.G. Brammer, and J. Hubert, Fuel 87, 103 (2008).

    Article  Google Scholar 

  10. N. Tsioumanis, J.G. Brammer, and J. Hubert, Energ. Convers. Manage. 52, 2667 (2011).

    Article  Google Scholar 

  11. M.D. Ahanj, M. Rahimi, and A.A. Alsairafi, Int. Commun. Heat Mass Trans. 39, 432 (2012).

    Article  Google Scholar 

  12. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Upper Saddle River, NJ: Pearson Education, 2007).

    Google Scholar 

  13. B.E. Launder and D.B. Spalding, Lectures in Mathematical Models of Turbulence (New York: Academic, 1972).

    MATH  Google Scholar 

  14. Y.B. Zeldovich, Acta Physic. URSS 21, 577 (1946).

    Google Scholar 

  15. R.K. Hanson and S. Salimian, Survey of Rate Constants in the N/H/O System, Combustion Chemistry, ed. W.C. Gardiner (New York: Springer, 1984).

  16. G.G. De Soete, Symp. (Int.) Combust. 15, 1093 (1975).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Science Foundation China (Grant Nos. 51274034, 51334002, and U1360201), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Zhang, L. et al. Numerical Simulation of the Thermal Process in a W-Shape Radiant Tube Burner. JOM 66, 1253–1264 (2014). https://doi.org/10.1007/s11837-014-1021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-014-1021-0

Keywords

Navigation