Skip to main content
Log in

Application of Photoelectric Conversion Technology in Photoelectric Signal Sampling System

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the use of photoelectric conversion technology in the process of creating enhanced photoelectric signal sampling systems using photoelectric conversion technology. The purpose of this research is to strengthen the sensitivity and dependability of signal capture by focusing on three primary aspects: the improvement of absorption, the downsizing of the device, and the efficiency of the conversion. It is possible to increase the amount of light that is absorbed by using localized surface Plasmon resonance for the goal of absorption augmentation. This, in turn, allows for an expansion of the spectrum of signals that may be detected. When compared to other components, the miniaturization component provides a greater emphasis on the design of small devices. This facilitates integration into small-scale sensors and systems, which ultimately results in improved mobility and flexibility. The author of the book “Conversion Efficiency” explores the benefits of plasmonic effects pertaining to the enhancement of photoelectric conversion, which finally leads to an improvement in the performance of the system. The use of photoelectric conversion technology has significant repercussions for a broad variety of applications, some of which include sensing, communication, and instrumentation, amongst others. The promise that this method will bring about a revolution in the processes of data collection is that it will make it possible to provide signal sampling devices that are exceedingly sensitive, compact, and efficient. It is clear that the findings of this research provide a significant contribution to the advancement of technology in domains where precision and reliability are of the highest significance. In addition, this discovery constitutes a significant advancement in the development of methods for sampling photoelectric signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu H, Lu H, Yang S, Wang Y, Wang C, and Yunjiang Rao (2020) Vertical Offset-Distance estimation and threat level prediction of vibrations with das. IEEE Access 8:177245–177254. https://doi.org/10.1109/ACCESS.2020.3025998

    Article  Google Scholar 

  2. Wang W, Liu D, Liu H, Sun Q, Sun Z, Zhang X, and Ziheng Xu (2009) Distributed Optical Fiber Perturbation Sensing System based on Mach-Zehnder Interferometer. Front Optoelectron China 2(2):229–232. https://doi.org/10.1007/s12200-009-0025-9

    Article  Google Scholar 

  3. Bai Y, Xin TT, Lin, Zhi Cheng Z (2021) Orthogonal Imbalance Compensation Method of Φ-OTDR System based on RLS Algorithm. IEEE Sens J 21(22):25730–25735. https://doi.org/10.1109/JSEN.2021.3117595

    Article  Google Scholar 

  4. Lin T, Ting YX, Bai ZC, Zhong, and Xu Gao (2021) Phase-sensitive Optical Time-Domain Reflectometric System based on Optical Synchronous Heterodyne. IEEE Sens J 21(10):12130–12136. https://doi.org/10.1109/JSEN.2021.3063433

    Article  Google Scholar 

  5. Juarez JC, and Henry F. Taylor (2007) Field Test of a distributed Fiber-Optic Intrusion Sensor System for Long Perimeters. Appl Opt 46(11):1968–1971. https://doi.org/10.1364/AO.46.001968

    Article  Google Scholar 

  6. Yuan H, Zhao R, Wang Y, Bai Q, Zhang H, Gao Y, and Baoquan Jin (2021) Long-Distance Detection for Periodic Vibration Signal in Φ-OTDR System using global phase demodulation method. IEEE Sens J 21(23):26799–26804. https://doi.org/10.1109/JSEN.2021.3121759

    Article  Google Scholar 

  7. Jia H, Liang S, Lou S, Sheng X (2019) A k -Nearest neighbor algorithm-based Near Category Support Vector Machine Method for Event Identification of ℓ -OTDR. IEEE Sens J 19(10):3683–3689. https://doi.org/10.1109/JSEN.2019.2891750

    Article  Google Scholar 

  8. Li J, Wang Y, Wang P, Zhong J, Bai Q, and Baoquan Jin (2022) Detection range enhancement for Φ-OTDR using semantic image segmentation. J Lightwave Technol 40(14):4886–4895. https://doi.org/10.1109/JLT.2022.3169945

    Article  Google Scholar 

  9. Shi Y, Liu X, and Chuliang Wei (2022) An event Recognition Method based on MFCC, Superposition Algorithm and Deep Learning for buried distributed optical Fiber sensors. Opt Commun 522. https://doi.org/10.1016/j.optcom.2022.128647

  10. Bai Y, Xin TT, Lin, Zhi Cheng Z (2021) Noise reduction method of -OTDR System based on EMD-TFPF Algorithm. IEEE Sens J 21(21):24084–24089. https://doi.org/10.1109/JSEN.2021.3107039

    Article  Google Scholar 

  11. Wu H, Liu X, Yao Xiao, and, Rao Y (2019) A dynamic time sequence Recognition and Knowledge Mining Method based on the hidden Markov models (HMMs) for Pipeline Safety monitoring with Φ-OTDR. J Lightwave Technol 37(19):4991–5000. https://doi.org/10.1109/JLT.2019.2926745

    Article  Google Scholar 

  12. Zhong X, Zhang C, Li L, Liang S, Li Q, Lü Q, Ding X, and Qiaoyuan Cao (2014) Influences of laser source on phase-sensitivity Optical Time-Domain Reflectometer-based distributed intrusion Sensor. Appl Opt 53(21):4645. https://doi.org/10.1364/ao.53.004645

    Article  Google Scholar 

  13. Chen X, Zou N, Wan Y, Ding Z, Zhang C, Tong S, Lu Y et al (2022) On-Line status monitoring and surrounding Environment Perception of an underwater Cable based on the phase-locked Φ-OTDR sensing system. Opt Express 30(17):30312. https://doi.org/10.1364/oe.458546

    Article  Google Scholar 

  14. Sladen A, Rivet D, Ampuero JP, De Barros L, Hello Y, Calbris G, Lamare P (2019) Distributed sensing of earthquakes and Ocean-Solid Earth Interactions on Seafloor Telecom Cables. Nat Commun 10(1). https://doi.org/10.1038/s41467-019-13793-z

  15. Pan W, Zhao K, Xie C, Li X, Chen J, and Libin Hu (2019) Distributed online monitoring method and application of Cable partial discharge based on φ -OTDR. IEEE Access 7:144444–144450. https://doi.org/10.1109/ACCESS.2019.2944570

    Article  Google Scholar 

  16. Desai S, Kanphade R, Priyadarshi R, Rayudu KVBV, and Vijay Nath (2023) A novel technique for detecting Crop diseases with efficient feature extraction. IETE J Res 1–9. https://doi.org/10.1080/03772063.2023.2220667

  17. Rawat P, Chauhan S, and Rahul Priyadarshi (2020) Energy-efficient clusterhead selection Scheme in Heterogeneous Wireless Sensor Network. J Circuits Syst Computers 29(13):2050204. https://doi.org/10.1142/S0218126620502047

    Article  Google Scholar 

  18. Priyadarshi R, Gupta B (2023) 2-D Coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomputing 79(5):4847–4869. https://doi.org/10.1007/s11227-022-04832-6

    Article  Google Scholar 

  19. Priyadarshi R, Rawat P, and Vijay Nath (2019) Energy dependent cluster formation in heterogeneous Wireless Sensor Network. Microsyst Technol 25(6):2313–2321. https://doi.org/10.1007/s00542-018-4116-7

    Article  Google Scholar 

  20. Liu Y, Jing Z, Liu Q, Li A, Lee A, Cheung Y, Zhang Y, and Wei Peng (2021) All-silica Fiber-Optic temperature-depth-salinity Sensor based on cascaded EFPIs and FBG for Deep Sea Exploration. Opt Express 29(15):23953. https://doi.org/10.1364/oe.432943

    Article  Google Scholar 

  21. Iga K (2018) Forty years of Vertical-Cavity surface-emitting laser: Invention and Innovation. Jpn J Appl Phys 57(8). https://doi.org/10.7567/JJAP.57.08PA01

  22. Chen H, Liu J, Zhang X, Wang W, Ma Z, Lv W, and Zilong Guo (2020) J Lightwave Technol 38(4):953–960. https://doi.org/10.1109/JLT.2019.2948214. High-Order Harmonic-Frequency Cross-Correlation Algorithm for Absolute Cavity Length Interrogation of White-Light Fiber-Optic Fabry-Perot Sensors

    Article  Google Scholar 

  23. Zhang Y, Yuan L, Lan X, Kaur A, Huang J, and Hai Xiao (2013) High-Temperature Fiber-Optic fabry–perot interferometric pressure Sensor fabricated by Femtosecond Laser. Opt Lett 38(22):4609. https://doi.org/10.1364/ol.38.004609

    Article  Google Scholar 

  24. Cai N, Xia L, and Ying Wu (2018) Multiplexing of Anti-resonant reflecting optical waveguides for temperature sensing based on Quartz Capillary. Opt Express 26(25):33501. https://doi.org/10.1364/oe.26.033501

    Article  Google Scholar 

  25. Feng JQ, Sun P, Tang WH, Buse DP, Wu QH, Richardson Z, Fitch J (2002) Implementation of a Power Transformer Temperature Monitoring System. In PowerCon 2002–2002 International Conference on Power System Technology, Proceedings, 3:1980–83. China: IEEE. https://doi.org/10.1109/ICPST.2002.1067880

  26. Lewander M, Fried A, Weibring P, Richter D, Spuler S, Rippe L (2011) Fast and sensitive time-multiplexed gas sensing of multiple lines using a Miniature Telecom Diode laser between 1529 nm and 1565 nm. Appl Phys B: Lasers Opt 104(3):715–723. https://doi.org/10.1007/s00340-011-4587-z

    Article  Google Scholar 

  27. Liu G, Han M, Hou W (2015) High-resolution and fast-response Fiber-Optic temperature Sensor using Silicon Fabry-Pérot Cavity. Opt Express 23(6):7237. https://doi.org/10.1364/oe.23.007237

    Article  Google Scholar 

  28. Wang Z, Lou S, Liang S, and Xinzhi Sheng (2020) Multi-class disturbance events Recognition based on EMD and XGBoost in φ-OTDR. IEEE Access 8:63551–63558. https://doi.org/10.1109/ACCESS.2020.2984022

    Article  Google Scholar 

  29. Priyadarshi R, and Bharat Gupta (2021) Area Coverage optimization in three-Dimensional Wireless Sensor Network. Wireless Pers Commun 117(2):843–865. https://doi.org/10.1007/s11277-020-07899-7

    Article  Google Scholar 

  30. Priyadarshi R, Nath V (2019) A Novel Diamond–Hexagon Search Algorithm for Motion Estimation. Microsyst Technol 25(12):4587–4591. https://doi.org/10.1007/s00542-019-04376-5

    Article  Google Scholar 

  31. Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three Level Heterogeneous Clustering Protocol for Wireless Sensor Network. Microsyst Technol 26(12):3855–3864. https://doi.org/10.1007/s00542-020-04874-x

    Article  Google Scholar 

  32. Choi K, Nam, and Henry F. Taylor (2003) Spectrally stable Er-Fiber laser for application in phase-sensitive Optical Time-Domain Reflectometry. IEEE Photonics Technol Lett 15(3):386–388. https://doi.org/10.1109/LPT.2003.807905

    Article  Google Scholar 

  33. Zhu F, Zhang X, Xia L, Guo Z, Zhang Y (2015) Active compensation method for light source frequency drifting in φ-OTDR sensing system. IEEE Photonics Technol Lett 27(24):2523–2526. https://doi.org/10.1109/LPT.2015.2468075

    Article  Google Scholar 

  34. Jia H, Lou S, Liang S, and Xinzhi Sheng (2020) Event identification by F-ELM Model for -OTDR Fiber-Optic distributed disturbance Sensor. IEEE Sens J 20(3):1297–1305. https://doi.org/10.1109/JSEN.2019.2946289

    Article  Google Scholar 

  35. Che Q, Wen H, Li X, Peng Z, Chen KP (2019) Partial discharge Recognition based on Optical Fiber distributed Acoustic sensing and a convolutional neural network. IEEE Access 7:101758–101764. https://doi.org/10.1109/ACCESS.2019.2931040

    Article  Google Scholar 

  36. Priyadarshi R, and Bharat Gupta (2020) Coverage Area Enhancement in Wireless Sensor Network. Microsyst Technol 26(5):1417–1426. https://doi.org/10.1007/s00542-019-04674-y

    Article  Google Scholar 

  37. Sateesh V, Anugrahith I, Dutta R, Priyadarshi, Nath V. Fractional Frequency Reuse Scheme for Noise-Limited Cellular Networks BT - Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems. In, edited by Vijay Nath and J K, Mandal (2021) 995–1004. Singapore: Springer Singapore

  38. Randheer SK, Soni S, Kumar, and Rahul Priyadarshi. Energy-Aware Clustering in Wireless Sensor Networks BT - Nanoelectronics, Circuits and Communication Systems. In, edited by Vijay Nath and J K, Mandal (2020) 453–61. Singapore: Springer Singapore

  39. Lu B, Wu B, Gu J, Yang J, Gao K, Wang Z, Ye L et al (2021) Distributed Optical Fiber Hydrophone based on Φ-OTDR and its field test. Opt Express 29(3):3147. https://doi.org/10.1364/oe.414598

    Article  Google Scholar 

  40. Lu Y, Zhu T, Chen L, and Xiaoyi Bao (2010) Distributed vibration Sensor based on coherent detection of Phase-OTDR. J Lightwave Technol 28(22):3243–3249. https://doi.org/10.1109/JLT.2010.2078798

    Article  Google Scholar 

  41. Kumar RR, Kumar A, Srivastava S (2020) Anisotropic Diffusion Based Unsharp Masking and Crispening for Denoising and Enhancement of MRI Images, International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET), Patna, India, 2020, pp. 1–6, https://doi.org/10.1109/ICEFEET49149.2020.9186966

  42. Ajo-Franklin JB, Dou S, Lindsey NJ, Monga I, Tracy C, Robertson M, Tribaldos VR et al (2019) Distributed acoustic sensing using Dark Fiber for Near-Surface characterization and Broadband Seismic Event Detection. Sci Rep 9(1). https://doi.org/10.1038/s41598-018-36675-8

  43. Priyadarshi R, KUMAR RR, Ying Z (2024) Techniques employed in distributed cognitive radio networks: a survey on routing intelligence. Multimedia Tools Appl. https://doi.org/10.1007/s11042-024-19054-6

    Article  Google Scholar 

  44. Yuan Q, Wang F, Liu T, Zhang Y, Zhang X (2019) Using an Auxiliary Mach-Zehnder Interferometer to compensate for the influence of Laser-Frequency-Drift in Φ-OTDR. IEEE Photonics J 11(1). https://doi.org/10.1109/JPHOT.2018.2884659

  45. Chen H, Xu Y, Qian S, Yuan H, and Lei Su (2020) Transient nanostrain detection in Phi-OTDR using statistics-based Signal Processing. J Lightwave Technol 38(17):4883–4892. https://doi.org/10.1109/JLT.2020.2996232

    Article  Google Scholar 

  46. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of Wireless Sensor Network. Wireless Pers Commun 117(2):825–841. https://doi.org/10.1007/s11277-020-07898-8

    Article  Google Scholar 

  47. Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance Analysis of Diamond Search Algorithm over full search algorithm. Microsyst Technol 24(6):2529–2537. https://doi.org/10.1007/s00542-017-3625-0

    Article  Google Scholar 

  48. Priyadarshi R (2024) Energy-efficient routing in Wireless Sensor networks: a Meta-heuristic and Artificial Intelligence-Based Approach: a Comprehensive Review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10039-6

    Article  Google Scholar 

  49. Priyadarshi R, and Raj Vikram (2023) A triangle-based localization Scheme in Wireless Multimedia Sensor Network. Wireless Pers Commun 133(1):525–546. https://doi.org/10.1007/s11277-023-10777-7

    Article  Google Scholar 

  50. Lu B, Gu J, Wang Z, Ye L, Liu Y, Yang J, Wu B, Ye Q, Qu R, and Haiwen Cai (2022) Ultra-low-noise MIMO distributed Acoustic Sensor using few-Mode Optical fibers. J Lightwave Technol 40(9):3062–3071. https://doi.org/10.1109/JLT.2022.3144191

    Article  Google Scholar 

  51. Zhou X, and Qingxu Yu (2011) Wide-range displacement Sensor Based on Fiber-Optic fabry–perot interferometer for Subnanometer Measurement. IEEE Sens J 11(7):1602–1606. https://doi.org/10.1109/jsen.2010.2103307

    Article  Google Scholar 

  52. Monteiro CS, António Vaz D, Viveiros CC, Linhares SérgioM, Tavares SO, Silva PV, Marques, Frazão O (2019) FBG Two-Dimensional Vibration Sensor for Power Transformers. Proceedings of SPIE: 7th European Workshop on Optical Fibre Sensors 11199: 110. https://doi.org/10.1117/12.2541132

  53. Liu J, Zhu L, He W, Wang Y, Meng F, and Yanming Song (2020) Fiber grating sensing interrogation system based on a modulated grating Y-Branch tunable laser for core-and-cladding-integrated Fiber Bragg Grating temperature measurement. Rev Sci Instrum 91(1). https://doi.org/10.1063/1.5132919

  54. Zhang D, Wang J, Wang Y, Dai X (2014) A fast response temperature Sensor based on Fiber Bragg Grating. Meas Sci Technol 25(7). https://doi.org/10.1088/0957-0233/25/7/075105

  55. Liu Y, Jing Z, Li R, Zhang Y, Liu Q, Li A, Zhang C, and Wei Peng (2020) Miniature Fiber-Optic tip pressure Sensor assembled by Hydroxide Catalysis Bonding Technology. Opt Express 28(2):948. https://doi.org/10.1364/oe.380589

    Article  Google Scholar 

  56. Kortschinski J, Leslie JR (1970) A Power-Cable temperature monitoring system. IEEE Trans Power Appar Syst PAS–89(7):1429–1433. https://doi.org/10.1109/TPAS.1970.292573

    Article  Google Scholar 

  57. Yan, A., Li, Z., Gao, Z., Zhang, J., Huang, Z., Ni, T.,… Wen, X. (2024). MURLAV: A Multiple-Node-Upset Recovery Latch and Algorithm-Based Verification Method. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. doi: 10.1109/TCAD.2024.3357593

  58. Yan, A., Wang, L., Cui, J., Huang, Z., Ni, T., Girard, P.,… Wen, X. (2024). Nonvolatile Latch Designs With Node-Upset Tolerance and Recovery Using Magnetic Tunnel Junctions and CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 32(1),116–127. doi: 10.1109/TVLSI.2023.3323562

  59. Yan, A., Liu, R., Cui, J., Ni, T., Girard, P., Wen, X.,… Zhang, J. (2023). Designs of BCD Adder Based on Excess-3 Code in Quantum-Dot Cellular Automata. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(6), 2256–2260. doi: 10.1109/TCSII.2023.3237695

  60. Qu J, Mao B, Li Z, Xu Y, Zhou K, Cao X, Wang X (2023) Recent progress in Advanced Tactile Sensing technologies for Soft Grippers. Adv Funct Mater 33(41):2306249. https://doi.org/10.1002/adfm.202306249

    Article  Google Scholar 

  61. Wang F, Ma M, Zhang X (2024) Study on a Portable Electrode used to detect the fatigue of Tower Crane drivers in Real Construction Environment. IEEE Trans Instrum Meas 73. https://doi.org/10.1109/TIM.2024.3353274

  62. Li, J., Li, J., Wang, C., Verbeek, F. J., Schultz, T.,… Liu, H. (2024). MS2OD: outlier detection using minimum spanning tree and medoid selection. Machine Learning: Science and Technology, 5(1), 15025. doi: 10.1088/2632-2153/ad2492

  63. Khan D, Alonazi M, Abdelhaq M, Al Mudawi N, Algarni A, Jalal A, H Liu (2024) Robust human locomotion and localization activity recognition over multisensory. Front Physiol 15. https://doi.org/10.3389/fphys.2024.1344887

  64. Luo, G., He, K., Wang, Y., Zhou, W., Chen, K., Zhao, L.,… Jiang, Z. (2023). Small blind-area, high-accuracy ultrasonic rangefinder using a broadband multi-frequency piezoelectric micromachined ultrasonic transducer array. Measurement Science and Technology,34(12), 125140. doi: 10.1088/1361-6501/acf682

  65. Liu G (April 2021) Data Collection in MI-Assisted Wireless Powered Underground Sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138. https://doi.org/10.1109/MCOM.001.2000921

  66. Wen J, Hui J, Wang L, Yang YF, Hou DH, Huo EL, Cai YX, Xiao, and Shan Shan Wang (2020) Response time of Microfiber Temperature Sensor in Liquid Environment. IEEE Sens J 20(12):6400–6407. https://doi.org/10.1109/JSEN.2020.2976535

    Article  Google Scholar 

  67. Li Y, Zhang GYL, He S (2015) Microfluidic flowmeter based on Micro ‘Hot-Wire’ sandwiched fabry-perot interferometer. Opt Express 23(7):9483. https://doi.org/10.1364/oe.23.009483

    Article  Google Scholar 

  68. Ding M, Wang P, and Gilberto Brambilla (2012) Fast-response high-temperature Microfiber Coupler Tip Thermometer. IEEE Photonics Technol Lett 24(14):1209–1211. https://doi.org/10.1109/LPT.2012.2200673

    Article  Google Scholar 

  69. Wu H, Meng Q, Li J, Han B, Wang Z, and Yunjiang Rao (2018) Spectral tailoring of Random Fiber Laser based on the Multimode Interference Filter. IEEE Access 6:39435–39441. https://doi.org/10.1109/ACCESS.2018.2854963

    Article  Google Scholar 

  70. Liu G, Sheng Q, Piassetta GRL, Hou W, Han M (2016) A Fiber-Optic Water Flow Sensor based on Laser-Heated Silicon Fabry-Pérot Cavity. Fiber Optic Sens Appl XIII 9852:98521B. https://doi.org/10.1117/12.2230556

    Article  Google Scholar 

  71. Tu G, Zhao M, Tang Z, Qian K, and Benli Yu (2020) Fading noise suppression in Φ-OTDR based on nearest neighbor analysis. J Lightwave Technol 38(23):6691–6698. https://doi.org/10.1109/JLT.2020.3015196

    Article  Google Scholar 

  72. Bian K, and Rahul Priyadarshi (2024) Machine learning optimization techniques: a Survey, classification, challenges, and Future Research Issues. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10110-w

    Article  Google Scholar 

  73. Jain V, Randheer R, Priyadarshi (2019) and Ankush Thakur. Performance Analysis of Block Matching Algorithms BT - Proceedings of the Third International Conference on Microelectronics, Computing and Communication Systems. In, edited by Vijay Nath and Jyotsna Kumar Mandal, 73–82. Singapore: Springer Singapore

  74. Priyadarshi R, Singh MP, Tripathi H, Sharma P (2017) Design and Performance Analysis of Vivaldi Antenna at Very High Frequency. In 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua:450–53. https://doi.org/10.1109/ICIIP.2017.8313758

  75. Singh M, Pratap R, Priyadarshi P, Sharma (2017) and Ankush Thakur. Small Size Rectangular Microstrip Patch Antenna with a Cross Slot Using SIW. In 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua:446–49. https://doi.org/10.1109/ICIIP.2017.8313757

  76. Nagore R, Jain PK, Gamad RS, Priyadarshi R (2023) Design of Low-Power High-Efficient Single-Tail Comparator Using 180 Nm CMOS Technology BT - Microelectronics, Communication Systems, Machine Learning and Internet of Things. In, edited by Vijay Nath and Jyotsna Kumar Mandal, 155–63. Singapore: Springer Nature Singapore

  77. Wu H, Wang Z, Peng F, Peng Z, Li X, Wu Y (2014) and Yunjiang Rao. Field Test of a Fully Distributed Fiber Optic Intrusion Detection System for Long-Distance Security Monitoring of National Borderline. 23rd International Conference on Optical Fibre Sensors 9157: 915790. https://doi.org/10.1117/12.2058504

  78. Gao X, Hu W, Dou Z, Li K, Gong X (2022) A method on vibration positioning of Φ-OTDR system based on compressed sensing. IEEE Sens J 22(16):16422–16429. https://doi.org/10.1109/JSEN.2022.3191863

    Article  Google Scholar 

  79. Priyadarshi R, Singh MP, Bhardwaj A, Sharma P (2017) Amount of Fading Analysis for Composite Fading Channel Using Holtzman Approximation. In 2017 4th International Conference on Image Information Processing, ICIIP 2017, 2018-Janua:454–58. https://doi.org/10.1109/ICIIP.2017.8313759

  80. Wang J, Liao Y, Wang S, and Xin Wang (2018) Ultrasensitive Optical sensing in Aqueous Solution based on Microfiber Modal Interferometer. Opt Express 26(19):24843. https://doi.org/10.1364/oe.26.024843

    Article  Google Scholar 

  81. Jiang F, Lu Z, Cai F, Li H, Zhang Z, Zhang Y, and Xuping Zhang (2019) Low computational cost distributed Acoustic sensing using Analog I/Q demodulation. Sens (Switzerland) 19(17). https://doi.org/10.3390/s19173753

  82. Priyadarshi R, Thakur A (2019) and Anjila Deonath Singh. Performance Evaluation Space-Time Interest Points Using Branching Particle Filters. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 556:83–90. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-7091-5_8

  83. Singh M, Pratap RP (2019) and Prashant Garg. Design of SIW-Fed Broadband Microstrip Patch Antenna for E-Band Wireless Communication. In Smart Computational Strategies: Theoretical and Practical Aspects, edited by Ashish Kumar Luhach, Kamarul Bin Ghazali Hawari, Ioan Cosmin Mihai, Pao-Ann Hsiung, and Ravi Bhushan Mishra, 185–93. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_16

  84. Priyadarshi R, Soni SK (2019) and Prashant Sharma. An Enhanced GEAR Protocol for Wireless Sensor Networks. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 511:289–97. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0776-8_27

  85. Ren GX, Wang XY, Du LB (2011) Design of High-Precision and fast-response temperature measurement system for Ocean. Instrument Technique Sens 2

  86. Saber EM, Tham KW, Hansjürg, Leibundgut (2016) A review of high temperature cooling systems in Tropical buildings. Build Environ 96:237–249. https://doi.org/10.1016/j.buildenv.2015.11.029

    Article  Google Scholar 

  87. Priyadarshi R, Yadav S (2019) and Deepika Bilyan. Performance and Comparison Analysis of MIEEP Routing Protocol over Adapted LEACH Protocol. In Smart Computational Strategies: Theoretical and Practical Aspects, edited by Ashish Kumar Luhach, Kamarul Bin Ghazali Hawari, Ioan Cosmin Mihai, Pao-Ann Hsiung, and Ravi Bhushan Mishra, 237–45. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_20

  88. Qiu Y, Ma L, and Rahul Priyadarshi (2024) Deep Learning challenges and prospects in Wireless Sensor Network Deployment. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10079-6

    Article  Google Scholar 

  89. Priyadarshi R (2024) Exploring machine learning solutions for overcoming challenges in IoT-Based Wireless Sensor Network Routing: a Comprehensive Review. Wireless Netw. https://doi.org/10.1007/s11276-024-03697-2

    Article  Google Scholar 

  90. Zhen Y, Duan F, Tu Q, Wei B (2015) Phase-sensitive Optical Time Domain Reflectometer Identification Algorithm of intrusion events. Acta Photonica Sin. 44

  91. Zhou J, Pan Z, Ye Q, Cai H, Qu R, and Zujie Fang (2013) Characteristics and explanations of interference fading of a φ-OTDR with a Multi-frequency source. J Lightwave Technol 31(17):2947–2954. https://doi.org/10.1109/JLT.2013.2275179

    Article  Google Scholar 

  92. Priyadarshi R, Yadav S (2019) and Deepika Bilyan. Performance Analysis of Adapted Selection Based Protocol over LEACH Protocol. In Smart Computational Strategies: Theoretical and Practical Aspects, edited by Ashish Kumar Luhach, Kamarul Bin Ghazali Hawari, Ioan Cosmin Mihai, Pao-Ann Hsiung, and Ravi Bhushan Mishra, 247–56. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_21

  93. Singh L, Kumar A (2020) and Rahul Priyadarshi. Performance and Comparison Analysis of Image Processing Based Forest Fire Detection. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:473–79. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_41

  94. Gupta T, Kumar A (2020) and Rahul Priyadarshi. A Novel Hybrid Precoding Technique for Millimeter Wave. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:481–93. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_42

  95. Kumar S, Soni SK, Randheer (2020) and Rahul Priyadarshi. Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:503–11. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44

  96. Rinaudo P, Paya-Zaforteza I, Calderón P, and Salvador Sales (2016) Experimental and Analytical evaluation of the response time of high temperature Fiber Optic Sensors. Sens Actuators A 243:167–174. https://doi.org/10.1016/j.sna.2016.03.022

    Article  Google Scholar 

  97. Meng H, Li H, and Zhanqi Cao (2018) An Optical Fiber Farby-Perot temperature sensor for Rapid Ocean Temperature Measurement. Zhongguo Jiguang/Chinese J Lasers 45(12). https://doi.org/10.3788/CJL201845.1210001

  98. Priyadarshi R (2021) and Ravi Ranjan Kumar. An Energy-Efficient LEACH Routing Protocol for Wireless Sensor Networks. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:423–30. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_35

  99. Sateesh V, Anugrahith A, Kumar R, Priyadarshi, Nath V (2021) A Novel Deployment Scheme to Enhance the Coverage in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:985–93. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_82

  100. Priyadarshi R, Singh A, Agarwal D, Verma UC, Singh A (2023) Emerging Smart Manufactory: Industry 4.0 and Manufacturing in India: The Next Wave. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:353–63. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_32

  101. Wang Y, Li Y, Xiao L, Liang B, Xin Liu Q, Bai, and Baoquan Jin (2022) Interference fading suppression using active frequency Transformation Method with Auxiliary Interferometer Feedback. J Lightwave Technol 40(3):872–879. https://doi.org/10.1109/JLT.2021.3123108

    Article  Google Scholar 

  102. Garcia-Ruiz A, Pastor-Graells AD-LJ, Martins HF, Sonia Martin-Lopez, and, Miguel G-H (2018) Long-range distributed Optical Fiber Hot-Wire Anemometer based on Chirped-Pulse ΦOTDR. Opt Express 26(1):463. https://doi.org/10.1364/oe.26.000463

    Article  Google Scholar 

  103. Qian H, Luo B, He H, Zhou Y, Zou X, Pan W, and Lianshan Yan (2022) Fading-free Φ-OTDR evaluation based on the statistical analysis of Phase Hopping. Appl Opt 61(23):6729. https://doi.org/10.1364/ao.463145

    Article  Google Scholar 

  104. Priyadarshi R, Bhardwaj P, Gupta P (2023) and Vijay Nath. Utilization of Smartphone-Based Wireless Sensors in Agricultural Science: A State of Art. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:681–88. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_56

  105. Ahmad A, Junaid SD, Hassan R, Priyadarshi, Nath V (2023) Analysis on Image Compression for Multimedia Communication Using Hybrid of DWT and DCT. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:667–72. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_54

  106. Pandey A, Kumar D, Priyadarshi R (2023) and Vijay Nath. Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:689–94. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_57

  107. Yu Z, Zhu L, Dai B, Li Liu, and, Zhang J (2022) Noise reduction based on adaptive prediction fitting algorithm for a heterodyne Φ-OTDR system. IEEE Photonics Technol Lett 34(23):1311–1314. https://doi.org/10.1109/LPT.2022.3213717

    Article  Google Scholar 

  108. Tabi Fouda B, Marie D, Han B, An, Chen X (2020) Research and Software Design of an φ-Otdr-Based Optical Fiber Vibration Recognition Algorithm. Journal of Electrical and Computer Engineering 2020. https://doi.org/10.1155/2020/5720695

  109. Cui K, Liu F, Wang K, Liu X, Yuan J, Binbin Yan, and Xian Zhou (2021) Interference-fading-suppressed pulse-coding Φ-OTDR using spectrum extraction and rotated-Vector-Sum Method. IEEE Photonics J 13(6). https://doi.org/10.1109/JPHOT.2021.3121064

  110. Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A Novel Approach for Sink Route in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:695–703. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_58

  111. Derickson D, Bernacil M, DeKelaita A, Maher B, Shane O’Connor MN, Sysak, and Leif Johanssen (2008) SGDBR single-chip Wavelength Tunable lasers for swept source OCT. Coherence Domain Opt Methods Opt Coherence Tomography Biomed XII 6847:68472P. https://doi.org/10.1117/12.761039

    Article  Google Scholar 

  112. Qu S, Chang J, Cong Z, Chen H, and Zengguang Qin (2019) Data Compression and SNR Enhancement with Compressive sensing method in Phase-Sensitive OTDR. Opt Commun 433:97–103. https://doi.org/10.1016/j.optcom.2018.09.064

    Article  Google Scholar 

  113. Qian H, Luo B, He H, Zhou Y, Chen H, Zou X, Pan W, and Lianshan Yan (2022) Fading-free Φ-OTDR with Multi-frequency Decomposition. IEEE Sens J 22(3):2160–2166. https://doi.org/10.1109/JSEN.2021.3128604

    Article  Google Scholar 

  114. Priyadarshi R, Singh L, Randheer, Singh A (2018) A Novel HEED Protocol for Wireless Sensor Networks. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 296–300. https://doi.org/10.1109/SPIN.2018.8474286

  115. Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D Coverage Optimization in WSN Using a Novel Variant of Particle Swarm Optimisation. In 2020 7th International Conference on Signal Processing and Integrated Networks, SPIN 2020, 663–68. https://doi.org/10.1109/SPIN48934.2020.9070978

  116. Priyadarshi R, Soni SK, and Vijay Nath (2018) Energy efficient cluster head formation in Wireless Sensor Network. Microsyst Technol 24(12):4775–4784. https://doi.org/10.1007/s00542-018-3873-7

    Article  Google Scholar 

  117. Liu X, Li Q, Zhang Y, and Shiwei Zhou (2014) Research of temperature response time hysteresis rule on Fiber Bragg Grating sensing. Guangxue Jishu/Optical Technique 40(2):156–159. https://doi.org/10.3788/gxjs20144002.0156

    Article  Google Scholar 

  118. Chacinski, Marekch M, Isaksson, and R. Schatz (2005) High-speed direct modulation of widely tunable MG-Y laser. IEEE Photonics Technol Lett 17(6):1157–1159. https://doi.org/10.1109/LPT.2005.846489

    Article  Google Scholar 

  119. Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: Stable Energy Efficient Network for Wireless Sensor Network. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 338–42. https://doi.org/10.1109/SPIN.2018.8474228

  120. Priyadarshi R, Gupta B, and Amulya Anurag (2020) Deployment techniques in Wireless Sensor networks: a Survey, classification, challenges, and Future Research Issues. J Supercomputing 76(9):7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  121. Priyadarshi R, Gupta B, and Amulya Anurag (2020) Wireless Sensor Networks Deployment: a result oriented analysis. Wireless Pers Commun 113(2):843–866. https://doi.org/10.1007/s11277-020-07255-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Tao.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Zhao, H., Zhang, J. et al. Application of Photoelectric Conversion Technology in Photoelectric Signal Sampling System. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10133-3

Keywords

Navigation