Skip to main content
Log in

Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this article, we will discuss the applications of the Spectral element method (SEM) and Finite element Method (FEM) for fractional calculusThe so-called fractional Spectral element method (f-SEM) and fractional Finite element method (f-FEM) are crucial in various branches of science and play a significant role. In this review, we discuss the advantages and adaptability of FEM and SEM, which provide the simulations of fractional derivatives and integrals and are, therefore, appropriate for a broad range of applications in engineering, biology, and physics. We emphasize that they can be used to simulate a wide range of real-world phenomena because they can handle fractional differential equations that are both linear and nonlinear. Although many researchers have already discussed applications of FEM in a variety of fractional differential equations (FDEs) and delivered very significant results, in this review article, we aspire to enclose fundamental to advanced articles in this field which will guide the researchers through recent achievements and advancements for the further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuste SB, Acedo LK (2004) Lindenberg reaction front in an \(a+b \rightarrow c\) creaction–subdiffusion process. Physi Rev E 69:036126. https://doi.org/10.1103/physreve.69.036126

    Article  ADS  CAS  Google Scholar 

  2. Meral F, Royston T, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15:939–945. https://doi.org/10.1016/j.cnsns.2009.05.004

    Article  ADS  MathSciNet  Google Scholar 

  3. Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: theory, numerical study and experimental validation. Eur J Mech A/Solids 54:243–251. https://doi.org/10.1016/j.euromechsol.2015.07.002

    Article  MathSciNet  Google Scholar 

  4. Sumelka W (2017) On fractional non-local bodies with variable length scale. Mech Res Commun 86:5–10. https://doi.org/10.1016/j.mechrescom.2017.10.004

    Article  Google Scholar 

  5. Sierociuk D, Ziubinski P (2014) Fractional order estimation schemes for fractional and integer order systems with constant and variable fractional order colored noise. Circuits Syst Signal Process 33:3861–3882. https://doi.org/10.1007/s00034-014-9835-0

    Article  MathSciNet  Google Scholar 

  6. Blaszczyk T (2017) Analytical and numerical solution of the fractional Euler–Bernoulli beam equation. J Mech Mater Struct 12:23–34. https://doi.org/10.2140/jomms.2017.12.23

    Article  MathSciNet  Google Scholar 

  7. Rahimi Z, Sumelka W, Yang X-J (2017) Linear and non-linear free vibration of nano beams based on a new fractional non-local theory. Eng Comput 34:1754–1770. https://doi.org/10.1108/ec-07-2016-0262

    Article  Google Scholar 

  8. Rahimi Z, Ahmadi SR, Sumelka W (2018) Fractional Euler–Bernoulli beam theory based on the fractional strain-displacement relation and its application in free vibration, bending and buckling analyses of micro/nanobeams. Acta Phys Pol A 134:574–582. https://doi.org/10.12693/aphyspola.134.574

    Article  ADS  CAS  Google Scholar 

  9. Barkai E, Metzler R, Klafter J (2000) From continuous time random walks to the fractional Fokker–Planck equation. Phys Rev E 61:132–138. https://doi.org/10.1103/physreve.61.132

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. Saichev AI, Zaslavsky GM (1997) Fractional kinetic equations: solutions and applications. Chaos: Interdiscip J Nonlinear Sci 7:753–764. https://doi.org/10.1063/1.166272

    Article  MathSciNet  CAS  Google Scholar 

  11. Zaslavsky G (2002) Chaos, fractional kinetics, and anomalous transport. Phys Rep 371:461–580. https://doi.org/10.1016/s0370-1573(02)00331-9

    Article  ADS  MathSciNet  Google Scholar 

  12. Metzler R, Klafter J (2000) Boundary value problems for fractional diffusion equations. Phys A Stat Mech Appl 278:107–125. https://doi.org/10.1016/s0378-4371(99)00503-8

    Article  MathSciNet  CAS  Google Scholar 

  13. Yuste SB, Quintana-Murillo J (2012) A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput Phys Commun 183:2594–2600. https://doi.org/10.1016/j.cpc.2012.07.011

    Article  ADS  MathSciNet  CAS  Google Scholar 

  14. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231. https://doi.org/10.1016/j.cnsns.2018.04.019

    Article  ADS  Google Scholar 

  15. Magin R (2006) Fractional calculus in bioengineering. Begell House Publishers, Connecticut

    Google Scholar 

  16. Miller K (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    Google Scholar 

  17. Mu’lla MAM (2020) Fractional calculus, fractional differential equations and applications. OALib 07:1–9. https://doi.org/10.4236/oalib.1106244

    Article  Google Scholar 

  18. Galloway L (1994) The forty fathom bank : a novella. Chronicle Books, San Francisco

    Google Scholar 

  19. Scalas E, Gorenflo R, Mainardi F (2000) Fractional calculus and continuous-time finance. Phys A Stat Mech Appl 284:376–384. https://doi.org/10.1016/s0378-4371(00)00255-7

    Article  MathSciNet  Google Scholar 

  20. Raberto M, Scalas E, Mainardi F (2002) Waiting-times and returns in high-frequency financial data: an empirical study. Phys A Stat Mech Appl 314:749–755. https://doi.org/10.1016/s0378-4371(02)01048-8

    Article  Google Scholar 

  21. Aguilar J-P, Korbel J (2018) Option pricing models driven by the space-time fractional diffusion: series representation and applications. Fractal Fract 2:15. https://doi.org/10.3390/fractalfract2010015

    Article  Google Scholar 

  22. Benson DA, Wheatcraft SW, Meerschaert MM (2000) Application of a fractional advection–dispersion equation. Water Resour Res 36:1403–1412. https://doi.org/10.1029/2000wr900031

    Article  ADS  Google Scholar 

  23. Benson DA, Schumer R, Meerschaert MM, Wheatcraft SW (2001) Fractional dispersion, Levy motion, and the MADE tracer tests. Transp Porous Med 42:211–240. https://doi.org/10.1023/a:1006733002131

    Article  Google Scholar 

  24. Liu F, Anh VV, Turner I, Zhuang P (2003) Time fractional advection–dispersion equation. J Appl Math Comput 13:233–245. https://doi.org/10.1007/bf02936089

    Article  MathSciNet  Google Scholar 

  25. Podlubny I (1999) Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, San Diego

    Google Scholar 

  26. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific. https://doi.org/10.1142/3779

    Book  Google Scholar 

  27. Jafarian A, Golmankhaneh AK, Baleanu D (2014) On fuzzy fractional laplace transformation. Adv Math Phys 2014:1–9. https://doi.org/10.1155/2014/295432

    Article  MathSciNet  Google Scholar 

  28. Kilbas AA (2006) Theory and applications of fractional differential equations. Elsevier, Amsterdam Boston

    Google Scholar 

  29. Mainardi F, Mura A, Pagnini G (2010) The -wright function in time-fractional diffusion processes: a tutorial survey. Int J Differ Equ 2010:1–29. https://doi.org/10.1155/2010/104505

    Article  MathSciNet  Google Scholar 

  30. Wang K-L, Wang K-J (2018) A modification of the reduced differential transform method for fractional calculus. Therm Sci 22:1871–1875. https://doi.org/10.2298/tsci1804871w

    Article  Google Scholar 

  31. Wang H, Xu D, Guo J (2020) Weak Galerkin finite-element method for time-fractional nonlinear integro-differential equations. Comput Appl Math. https://doi.org/10.1007/s40314-020-1134-8

    Article  MathSciNet  Google Scholar 

  32. Nonnenmacher TF, Metzler R (1995) On the Riemann–Liouville fractional calculus and some recent applications. Fractals 03:557–566. https://doi.org/10.1142/s0218348x95000497

    Article  MathSciNet  Google Scholar 

  33. Li C, Qian D, Chen Y (2011) On Riemann–Liouville and Caputo derivatives. Discret Dyn Nat Soc 2011:1–15. https://doi.org/10.1155/2011/562494

    Article  MathSciNet  Google Scholar 

  34. Baleanu D, Avkar T (2004) Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Il Nuovo Cimento B 119:73–79. https://doi.org/10.1393/ncb/i2003-10062-y

    Article  ADS  Google Scholar 

  35. Miller KS (1975) The Weyl fractional calculus. Lecture notes in mathematics. Springer, Berlin Heidelberg, pp 80–89. https://doi.org/10.1007/bfb0067098

    Chapter  Google Scholar 

  36. Wu G-C, Baleanu D, Deng Z-G, Zeng S-D (2015) Lattice fractional diffusion equation in terms of a Riesz–Caputo difference. Phys A Stat Mech Appl 438:335–339. https://doi.org/10.1016/j.physa.2015.06.024

    Article  MathSciNet  Google Scholar 

  37. Muslih SI, Agrawal OP (2009) Riesz fractional derivatives and fractional dimensional space. Int J Theor Phys 49:270–275. https://doi.org/10.1007/s10773-009-0200-1

    Article  MathSciNet  CAS  Google Scholar 

  38. Xu Y, He Z, Xu Q (2013) Numerical solutions of fractional advection–diffusion equations with a kind of new generalized fractional derivative. Int J Comput Math 91:588–600. https://doi.org/10.1080/00207160.2013.799277

    Article  MathSciNet  Google Scholar 

  39. Horr A, Schmidt L (1996) A fractional-spectral method for vibration of damped space structures. Eng Struct 18:947–956

    Article  Google Scholar 

  40. Agrawal OP (2008) A general finite element formulation for fractional variational problems. J Math Anal Appl 337:1–12. https://doi.org/10.1016/j.jmaa.2007.03.105

    Article  MathSciNet  Google Scholar 

  41. Jin B, Lazarov R, Zhou Z (2016) A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J Numer Anal 54:481–503. https://doi.org/10.1137/140992278

    Article  MathSciNet  Google Scholar 

  42. Zhang YD, Zhao YM, Wang FL, Tang YF (2017) High-accuracy finite element method for 2d time fractional diffusion-wave equation on anisotropic meshes. Int J Comput Math 95:218–230. https://doi.org/10.1080/00207160.2017.1401708

    Article  MathSciNet  Google Scholar 

  43. Szajek K, Sumelka W (2018) Identification of mechanical properties of 1d deteriorated non-local bodies. Struct Multidiscip Optim 59:185–200. https://doi.org/10.1007/s00158-018-2060-x

    Article  MathSciNet  Google Scholar 

  44. Badr AA (2012) Finite element method for linear multiterm fractional differential equations. J Appl Math 2012:1–9. https://doi.org/10.1155/2012/482890

    Article  ADS  MathSciNet  Google Scholar 

  45. Zhang H, Liu F, Anh V (2010) Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl Math Comput 217:2534–2545. https://doi.org/10.1016/j.amc.2010.07.066

    Article  MathSciNet  Google Scholar 

  46. Bu W, Tang Y, Wu Y, Yang J (2015) Crank–Nicolson ADI Galerkin finite element method for two-dimensional fractional FitzHugh–Nagumo monodomain model. Appl Math Comput 257:355–364. https://doi.org/10.1016/j.amc.2014.09.034

    Article  MathSciNet  Google Scholar 

  47. Zayernouri M, Karniadakis GE (2014) Exponentially accurate spectral and spectral element methods for fractional odes. J Comput Phys 257:460–480

    Article  ADS  MathSciNet  Google Scholar 

  48. Zayernouri M, Cao W, Zhang Z, Karniadakis GE (2014) Spectral and discontinuous spectral element methods for fractional delay equations. SIAM J Sci Comput 36:B904–B929

    Article  MathSciNet  Google Scholar 

  49. Dehghan M, Abbaszadeh M, Mohebbi A (2016) Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl Math Model 40:3635–3654

    Article  MathSciNet  Google Scholar 

  50. Harizanov S, Lazarov R, Margenov S (2020) A survey on numerical methods for spectral space-fractional diffusion problems. Fract Calculus Appl Anal 23:1605–1646

    Article  MathSciNet  Google Scholar 

  51. Liu J, Li H, Fang Z, Liu Y (2014) Application of low-dimensional finite element method to fractional diffusion equation. Int J Model Simul Sci Comput 05:1450022. https://doi.org/10.1142/s1793962314500226

    Article  Google Scholar 

  52. Shi D, Yang H (2018) Superconvergence analysis of finite element method for time-fractional thermistor problem. Appl Math Comput 323:31–42. https://doi.org/10.1016/j.amc.2017.11.027

    Article  MathSciNet  Google Scholar 

  53. Bu W, Liu X, Tang Y, Yang J (2015) Finite element multigrid method for multi-term time fractional advection diffusion equations. Int J Model Simul Sci Comput 06:1540001. https://doi.org/10.1142/s1793962315400012

    Article  Google Scholar 

  54. Cortés F, Elejabarrieta MJ (2007) Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int J Numer Methods Eng 69:2173–2195. https://doi.org/10.1002/nme.1840

    Article  Google Scholar 

  55. Shull KR, Taghon M, Wang Q (2020) Investigations of the high-frequency dynamic properties of polymeric systems with quartz crystal resonators. Biointerphases 15:021012. https://doi.org/10.1116/1.5142762

    Article  PubMed  Google Scholar 

  56. Nokhbatolfoghahai A, Navazi H, Haddadpour H (2020) High-frequency random vibrations of a stiffened plate with a cutout using energy finite element and experimental methods. Proc Inst Mech Eng Part C J Mech Eng Sci 234:3297–3317. https://doi.org/10.1177/0954406220914328

    Article  Google Scholar 

  57. Shoyama T, Fujimoto K (2018) Calculation of high-frequency dynamic properties of squeezed o-ring for bearing support. Mech Eng J 5:1700444–1700444. https://doi.org/10.1299/mej.17-00444

    Article  Google Scholar 

  58. Lu YC, Anderson ME, Nash DA (2007) Characterize the high-frequency dynamic properties of elastomers using fractional calculus for FEM. SAE technical paper series. SAE International, London. https://doi.org/10.4271/2007-01-2417

    Chapter  Google Scholar 

  59. Sua’rez LE, Shokooh A, Arroyo J (1997) Finite element analysis of beams with constrained damping treatment modeled via fractional derivatives. Appl Mech Rev 50:S216–S224. https://doi.org/10.1115/1.3101839

    Article  ADS  Google Scholar 

  60. Norouzzadeh A, Ansari R (2017) Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Phys E Low-dimens Syst Nanostruct 88:194–200. https://doi.org/10.1016/j.physe.2017.01.006

    Article  ADS  Google Scholar 

  61. Galucio AC, Deü J-F, Ohayon R (2004) Finite element formulation of viscoelastic sandwich beams using fractional derivative operators. Comput Mech 33:282–291. https://doi.org/10.1007/s00466-003-0529-x

    Article  Google Scholar 

  62. Vanmarcke E, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech 109:1203–1214. https://doi.org/10.1061/(asce)0733-9399(1983)109:5(1203)

    Article  Google Scholar 

  63. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210. https://doi.org/10.1122/1.549724

    Article  ADS  CAS  Google Scholar 

  64. Shimizu N, Zhang W (1999) Fractional calculus approach to dynamic problems of viscoelastic materials. JSME Int J Ser C 42:825–837. https://doi.org/10.1299/jsmec.42.825

    Article  Google Scholar 

  65. Alotta G, Failla G, Pinnola FP (2017) Stochastic analysis of a nonlocal fractional viscoelastic bar forced by Gaussian white noise. ASCE-ASME J Risk Uncertain Eng Syst Part B Mech Eng. https://doi.org/10.1115/1.4036702

    Article  Google Scholar 

  66. Alotta G, Barrera O, Cocks A, Paola MD (2018) The finite element implementation of 3d fractional viscoelastic constitutive models. Finite Elem Anal Design 146:28–41. https://doi.org/10.1016/j.finel.2018.04.003

    Article  MathSciNet  Google Scholar 

  67. Paola MD, Scimemi GF (2016) Finite element method on fractional visco-elastic frames. Comput Struct 164:15–22. https://doi.org/10.1016/j.compstruc.2015.10.008

    Article  Google Scholar 

  68. Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30:133–155. https://doi.org/10.1122/1.549887

    Article  ADS  CAS  Google Scholar 

  69. Zhou Z, Tan Z (2018) Finite element approximation of optimal control problem governed by space fractional equation. J Sci Comput 78:1840–1861. https://doi.org/10.1007/s10915-018-0829-0

    Article  MathSciNet  Google Scholar 

  70. Li F-M, Liu C-C (2015) Vibration analysis and active control for frame structures with piezoelectric rods using spectral element method. Arch Appl Mech 85:675–690

    Article  Google Scholar 

  71. Antil H, Otárola E (2015) A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J Control Optim 53:3432–3456. https://doi.org/10.1137/140975061

    Article  MathSciNet  Google Scholar 

  72. Zakeri A, Abchouyeh MA (2012) Solving an elliptic optimal control problem with BEM and FEM. J Math Comput Sci 04:448–455. https://doi.org/10.22436/jmcs.04.03.19

    Article  Google Scholar 

  73. Pang G, Chen W, Sze KY (2015) A comparative study of finite element and finite difference methods for two-dimensional space-fractional advection-dispersion equation. Adv Appl Math Mech 8:166–186. https://doi.org/10.4208/aamm.2014.m693

    Article  MathSciNet  Google Scholar 

  74. Almeida R, Torres DFM (2014) A discrete method to solve fractional optimal control problems. Nonlinear Dyn 80:1811–1816. https://doi.org/10.1007/s11071-014-1378-1

    Article  MathSciNet  Google Scholar 

  75. Jin B, Lazarov R, Zhou Z (2013) Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J Numer Anal 51:445–466. https://doi.org/10.1137/120873984

    Article  MathSciNet  Google Scholar 

  76. Zhou Z, Gong W (2016) Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput Math Appl 71:301–318. https://doi.org/10.1016/j.camwa.2015.11.014

    Article  MathSciNet  Google Scholar 

  77. Zhou Z (2020) Finite element approximation of space fractional optimal control problem with integral state constraint. Numer Math Theory Methods Appl 13:1027–1049. https://doi.org/10.4208/nmtma.oa-2019-0201

    Article  MathSciNet  Google Scholar 

  78. Dohr S, Kahle C, Rogovs S, Swierczynski P A FEM for an optimal control problem subject to the fractional laplace equation. arXiv:1809.10177

  79. Dohr S, Kahle C, Rogovs S, Swierczynski P (2019) A FEM for an optimal control problem subject to the fractional laplace equation. Calcolo. https://doi.org/10.1007/s10092-019-0334-3

    Article  MathSciNet  Google Scholar 

  80. Otarola E (2016) A piecewise linear FEM for an optimal control problem of fractional operators: error analysis on curved domains. ESAIM: Math Model Numer Anal. https://doi.org/10.1051/m2an/2016065

    Article  Google Scholar 

  81. Zhuang P, Liu F, Turner I, Anh V (2015) Galerkin finite element method and error analysis for the fractional cable equation. Numer Algorithms 72:447–466. https://doi.org/10.1007/s11075-015-0055-x

    Article  MathSciNet  Google Scholar 

  82. Liu Y, Du Y-W, Li H, Wang J-F (2016) A two-grid finite element approximation for a nonlinear time-fractional cable equation. Nonlinear Dyn 85:2535–2548. https://doi.org/10.1007/s11071-016-2843-9

    Article  MathSciNet  Google Scholar 

  83. Oñate E, Garcia J (2001) A finite element method for fluid-structure interaction with surface waves using a finite calculus formulation. Comput Methods Appl Mech Eng 191:635–660. https://doi.org/10.1016/s0045-7825(01)00306-1

    Article  ADS  Google Scholar 

  84. Henry BI, Langlands TAM, Wearne SL (2008) Fractional cable models for spiny neuronal dendrites. Phys Rev Lett. https://doi.org/10.1103/physrevlett.100.128103

    Article  PubMed  Google Scholar 

  85. Yu B, Jiang X (2015) Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J Sci Comput 68:252–272. https://doi.org/10.1007/s10915-015-0136-y

    Article  MathSciNet  Google Scholar 

  86. Koch C, Poggio T (1985) A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry. J Neurosci Methods 12:303–315. https://doi.org/10.1016/0165-0270(85)90015-9

    Article  CAS  PubMed  Google Scholar 

  87. Wang Y, Liu Y, Li H, Wang J (2016) Finite element method combined with second-order time discrete scheme for nonlinear fractional cable equation. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16061-3

    Article  Google Scholar 

  88. Liu Y, Du Y, Li H, Liu F, Wang Y (2018) Some second-order schemes combined with finite element method for nonlinear fractional cable equation. Numer Algorithms 80:533–555. https://doi.org/10.1007/s11075-018-0496-0

    Article  MathSciNet  Google Scholar 

  89. Lin Y, Li X, Xu C (2010) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80:1369–1396. https://doi.org/10.1090/s0025-5718-2010-02438-x

    Article  MathSciNet  Google Scholar 

  90. Al-Maskari M, Karaa S (2018) The lumped mass FEM for a time-fractional cable equation. Appl Numer Math 132:73–90. https://doi.org/10.1016/j.apnum.2018.05.012

    Article  MathSciNet  Google Scholar 

  91. Deng W (2009) Finite element method for the space and time fractional Fokker–Planck equation. SIAM J Numer Anal 47:204–226. https://doi.org/10.1137/080714130

    Article  MathSciNet  Google Scholar 

  92. Ford N, Xiao J, Yan Y (2011) A finite element method for time fractional partial differential equations. Fract Calculus Appl Anal. https://doi.org/10.2478/s13540-011-0028-2

    Article  MathSciNet  Google Scholar 

  93. Liu Y, Du Y, Li H, Wang J (2014) An h\(\hat{1}\) h 1 -galerkin mixed finite element method for time fractional reaction-diffusion equation. J Appl Math Comput 47:103–117. https://doi.org/10.1007/s12190-014-0764-7

    Article  MathSciNet  Google Scholar 

  94. Huang C, Stynes M (2020) Optimal h1 spatial convergence of a fully discrete finite element method for the time-fractional Allen–Cahn equation. Adv Comput Math. https://doi.org/10.1007/s10444-020-09805-y

    Article  Google Scholar 

  95. Jin B, Lazarov R, Pasciak J, Zhou Z (2014) Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J Numer Anal 35:561–582. https://doi.org/10.1093/imanum/dru018

    Article  MathSciNet  Google Scholar 

  96. Manimaran J, Shangerganesh L, Debbouche A, Antonov V (2019) Numerical solutions for time-fractional cancer invasion system with nonlocal diffusion. Front Phys. https://doi.org/10.3389/fphy.2019.00093

    Article  Google Scholar 

  97. Esen A, Ucar Y, Yagmurlu N, Tasbozan O (2013) A Galerkin finite element method to solve fractional diffusion and fractional diffusion-wave equations. Math Model Anal 18:260–273. https://doi.org/10.3846/13926292.2013.783884

    Article  MathSciNet  Google Scholar 

  98. Jin B, Lazarov R, Pasciak J, Zhou Z Galerkin FEM for fractional order parabolic equations with initial data in \(h^{-s},~0 < s \le 1\). arXiv:1303.2932

  99. Zeng F, Li C (2017) A new Crank–Nicolson finite element method for the time-fractional subdiffusion equation. Appl Numer Math 121:82–95. https://doi.org/10.1016/j.apnum.2017.06.011

    Article  MathSciNet  Google Scholar 

  100. Jiang Y, Ma J (2013) Moving finite element methods for time fractional partial differential equations. Sci China Math 56:1287–1300. https://doi.org/10.1007/s11425-013-4584-2

    Article  ADS  MathSciNet  Google Scholar 

  101. Esen A, Tasbozan O (2015) Numerical solution of time fractional burgers equation by cubic b-spline finite elements. Mediterr J Math 13:1325–1337. https://doi.org/10.1007/s00009-015-0555-x

    Article  MathSciNet  Google Scholar 

  102. Zhao Y, Chen P, Bu W, Liu X, Tang Y (2015) Two mixed finite element methods for time-fractional diffusion equations. J Sci Comput 70:407–428. https://doi.org/10.1007/s10915-015-0152-y

    Article  MathSciNet  Google Scholar 

  103. Zhao J, Xiao J, Xu Y (2013) Stability and convergence of an effective finite element method for multiterm fractional partial differential equations. Abstract Appl Anal 2013:1–10. https://doi.org/10.1155/2013/857205

    Article  MathSciNet  Google Scholar 

  104. Sun H, Chen W, Sze KY (2013) A semi-discrete finite element method for a class of time-fractional diffusion equations. Philos Trans R Soc A Math Phys Eng Sci 371:20120268. https://doi.org/10.1098/rsta.2012.0268

    Article  ADS  MathSciNet  Google Scholar 

  105. Zhao Y, Zhang Y, Liu F, Turner I, Shi D (2016) Analytical solution and nonconforming finite element approximation for the 2d multi-term fractional subdiffusion equation. Appl Math Model 40:8810–8825. https://doi.org/10.1016/j.apm.2016.05.039

    Article  MathSciNet  Google Scholar 

  106. Qin S, Liu F, Turner IW (2018) A 2d multi-term time and space fractional Bloch–Torrey model based on bilinear rectangular finite elements. Commun Nonlinear Sci Numer Simul 56:270–286. https://doi.org/10.1016/j.cnsns.2017.08.014

    Article  ADS  MathSciNet  Google Scholar 

  107. Patnaik S, Sidhardh S, Semperlotti F (2020) A Ritz-based finite element method for a fractional-order boundary value problem of nonlocal elasticity. Int J Solids Struct 202:398–417. https://doi.org/10.1016/j.ijsolstr.2020.05.034

    Article  Google Scholar 

  108. Liu J, Zhou Z (2021) Finite element approximation of time fractional optimal control problem with integral state constraint. AIMS Math 6:979–997. https://doi.org/10.3934/math.2021059

    Article  MathSciNet  Google Scholar 

  109. Zhao M, Cheng A, H. W. (2017) A preconditioned fast hermite finite element method for space-fractional diffusion equations. Discret Contin Dyn Syst B 22:3529–3545. https://doi.org/10.3934/dcdsb.2017178

    Article  MathSciNet  Google Scholar 

  110. Zheng Y, Li C, Zhao Z (2010) A note on the finite element method for the space-fractional advection diffusion equation. Comput Math Appl 59:1718–1726. https://doi.org/10.1016/j.camwa.2009.08.071

    Article  MathSciNet  Google Scholar 

  111. He T (2019) The cell-based smoothed finite element method for viscoelastic fluid flows using fractional-step schemes. Comput Struct 222:133–147. https://doi.org/10.1016/j.compstruc.2019.07.007

    Article  Google Scholar 

  112. Ma J, Liu J, Zhou Z (2014) Convergence analysis of moving finite element methods for space fractional differential equations. J Comput Appl Math 255:661–670. https://doi.org/10.1016/j.cam.2013.06.021

    Article  MathSciNet  Google Scholar 

  113. Wang H, Yang D, Zhu S (2014) Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J Numer Anal 52:1292–1310. https://doi.org/10.1137/130932776

    Article  MathSciNet  Google Scholar 

  114. Du N, Wang H (2015) A fast finite element method for space-fractional dispersion equations on bounded domains in \(mathbb{r} 2\). SIAM J Sci Comput 37:A1614–A1635. https://doi.org/10.1137/15m1007458

    Article  Google Scholar 

  115. Fan W, Liu F, Jiang X, Turner I (2017) A novel unstructured mesh finite element method for solving the time-space fractional wave equation on a two-dimensional irregular convex domain. Fract Calculus Appl Anal. https://doi.org/10.1515/fca-2017-0019

    Article  MathSciNet  Google Scholar 

  116. Choi YJ, Chung SK (2012) Finite element solutions for the space fractional diffusion equation with a nonlinear source term. Abstract Appl Anal 2012:1–25. https://doi.org/10.1155/2012/596184

    Article  MathSciNet  Google Scholar 

  117. Feng LB, Zhuang P, Liu F, Turner I, Gu YT (2015) Finite element method for space-time fractional diffusion equation. Numer Algorithms 72:749–767. https://doi.org/10.1007/s11075-015-0065-8

    Article  MathSciNet  Google Scholar 

  118. Bu W, Shu S, Yue X, Xiao A, Zeng W (2019) Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain. Comput Math Appl 78:1367–1379. https://doi.org/10.1016/j.camwa.2018.11.033

    Article  MathSciNet  Google Scholar 

  119. Li M, Huang C (2017) ADI Galerkin FEMs for the 2d nonlinear time-space fractional diffusion-wave equation. Int J Model Simul Sci Comput 08:1750025. https://doi.org/10.1142/s1793962317500258

    Article  Google Scholar 

  120. Liu F, Feng L, Anh V, Li J (2019) Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch–Torrey equations on irregular convex domains. Comput Math Appl 78:1637–1650. https://doi.org/10.1016/j.camwa.2019.01.007

    Article  MathSciNet  Google Scholar 

  121. Lai J, Liu F, Anh VV, Liu Q (2021) A space-time finite element method for solving linear Riesz space fractional partial differential equations. Numer Algorithms. https://doi.org/10.1007/s11075-020-01047-9

    Article  MathSciNet  Google Scholar 

  122. Gorenflo R, Mainardi F, Moretti D, Paradisi P (2002) Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn 29:129–143. https://doi.org/10.1023/a:1016547232119

    Article  MathSciNet  Google Scholar 

  123. Gao X, Liu F, Li H, Liu Y, Turner I, Yin B (2020) A novel finite element method for the distributed-order time fractional cable equation in two dimensions. Comput Math Appl 80:923–939. https://doi.org/10.1016/j.camwa.2020.04.019

    Article  MathSciNet  Google Scholar 

  124. Karaagac B (2018) Analysis of the cable equation with non-local and non-singular kernel fractional derivative. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2018-11916-1

    Article  Google Scholar 

  125. Wang J, Zhao M, Zhang M, Liu Y, Li H (2014) Numerical analysis of anH1-Galerkin mixed finite element method for time fractional telegraph equation. Sci World J 2014:1–14. https://doi.org/10.1155/2014/371413

    Article  Google Scholar 

  126. Jiang Y, Ma J (2011) High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math 235:3285–3290. https://doi.org/10.1016/j.cam.2011.01.011

    Article  MathSciNet  Google Scholar 

  127. Chen C, Thom\(\lbrace \)ée V, Wahlbin LB (1992) Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math Comput 58:587–587. https://doi.org/10.1090/s0025-5718-1992-1122059-2

  128. Zhang T, Sheng Y (2021) The h1-error analysis of the finite element method for solving the fractional diffusion equation. J Math Anal Appl 493:124540. https://doi.org/10.1016/j.jmaa.2020.124540

    Article  Google Scholar 

  129. Dehghan M, Abbaszadeh M (2019) Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives. J Comput Appl Math 356:314–328. https://doi.org/10.1016/j.cam.2018.12.028

    Article  MathSciNet  Google Scholar 

  130. Huang C, Stynes M (2020) \(\alpha \)-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer Algorithms. https://doi.org/10.1007/s11075-020-01036-y

    Article  Google Scholar 

  131. G. an Zou, A. Atangana, Y. Zhou, (2018) Error estimates of a semidiscrete finite element method for fractional stochastic diffusion–wave equations. Numer Methods Partial Differ Equ 34:1834–1848. https://doi.org/10.1002/num.22252

  132. Zheng X, Wang H (2020) Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J Numer Anal. https://doi.org/10.1093/imanum/draa013

    Article  Google Scholar 

  133. Mustapha K (2018) FEM for time-fractional diffusion equations, novel optimal error analyses. Math Comput 87:2259–2272. https://doi.org/10.1090/mcom/3304

    Article  MathSciNet  Google Scholar 

  134. Ren J, Shi D, Vong S (2019) High accuracy error estimates of a Galerkin finite element method for nonlinear time fractional diffusion equation. Numer Methods Partial Differ Equ 36:284–301. https://doi.org/10.1002/num.22428

    Article  MathSciNet  Google Scholar 

  135. Li X, Yang X (2018) Error estimates of finite element methods for fractional stochastic Navier–Stokes equations. J Inequal Appl. https://doi.org/10.1186/s13660-018-1880-y

    Article  MathSciNet  PubMed Central  PubMed  Google Scholar 

  136. Zhang Y, Yang X, Li X (2018) Error estimates of finite element methods for nonlinear fractional stochastic differential equations. Adv Differ Equ. https://doi.org/10.1186/s13662-018-1665-0

    Article  MathSciNet  Google Scholar 

  137. Li J, Huang Y, Lin Y (2011) Developing finite element methods for Maxwell’s equations in a Cole–Cole dispersive medium. SIAM J Sci Comput 33:3153–3174. https://doi.org/10.1137/110827624

    Article  MathSciNet  Google Scholar 

  138. Li D, Zhang J, Zhang Z (2018) Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J Sci Comput 76:848–866. https://doi.org/10.1007/s10915-018-0642-9

    Article  MathSciNet  Google Scholar 

  139. Shi D, Yang H (2017) Unconditional optimal error estimates of a two-grid method for semilinear parabolic equation. Appl Math Comput 310:40–47. https://doi.org/10.1016/j.amc.2017.04.010

    Article  MathSciNet  Google Scholar 

  140. Gunzburger M, Wang J (2019) Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional PDE. SIAM J Control Optim 57:241–263. https://doi.org/10.1137/17m1155636

    Article  MathSciNet  Google Scholar 

Download references

Funding

There is no source of external funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Bilal Hafeez.

Ethics declarations

Conflict of interest

It is declared that there is no conflict of interest for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M.B., Krawczuk, M. Fractional Spectral and Fractional Finite Element Methods: A Comprehensive Review and Future Prospects. Arch Computat Methods Eng (2024). https://doi.org/10.1007/s11831-024-10083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11831-024-10083-w

Navigation