Skip to main content
Log in

Systematic Literature Review of Various Neural Network Techniques for Sea Surface Temperature Prediction Using Remote Sensing Data

  • Survey article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The popularity of using various neural network models and deep learning-based models to predict environmental temperament is increasing due to their ability to comprehend and address complex systems. When examining oceans and marine systems, Sea Surface Temperature (SST) is a critical factor to consider in terms of its impact on species, water availability, and natural events such as droughts and floods. This evaluation supplements a detailed analysis of Machine Learning and Deep Learning models that have been employed for several decades to predict SST. The study highlights familiar data, data sources, performance metrics, and a range of models for SSTP (Sea Surface Temperature Prediction), including artificial neural networks, convolutional neural networks, recurrent neural networks, graph neural networks, and ensemble neural networks. The research also examines the latest trends in this field and suggests possible future research directions. The primary focus of this survey is to showcase the significant advancements made by numerous researchers, especially in the areas of DL techniques and ensemble methods for SSTP. It also provides an in-depth analysis of the most commonly used SST datasets along with their data generation source, record period, accessible resolution criteria, strengths, and weaknesses. The ultimate goal of this investigation is to provide a theoretical framework and ontology to support SSTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Wentz FJ, Gentemann C, Smith D, Chelton D (2000) Satellite measurements of sea surface temperature through clouds. Science 288(5467):847–850

    Article  Google Scholar 

  2. Friedel MJ (2012) Data-driven modeling of surface temperature anomaly and solar activity trends. Environ Model Softw 37:217–232

    Article  Google Scholar 

  3. Rauscher SA, Jiang X, Steiner A, Williams AP, Cai DM, McDowell NG (2015) Sea surface temperature warming patterns and future vegetation change. J Clim 28(20):7943–7961

    Article  Google Scholar 

  4. Partelow S, von Wehrden H, Horn O (2015) Pollution exposure on marine protected areas: a global assessment. Mar Pollut Bull 100(1):352–358

    Article  Google Scholar 

  5. Findell KL, Delworth TL (2010) Impact of common sea surface temperature anomalies on global drought and pluvial frequency. J Clim 23(3):485–503

    Article  Google Scholar 

  6. Ma T, Wu G, Liu Y, Mao J (2022) Abnormal warm sea-surface temperature in the Indian ocean, active potential vorticity over the Tibetan plateau, and severe flooding along the Yangtze river in summer 2020. Q J R Meteorol Soc 148(743):1001–1019

    Article  Google Scholar 

  7. Whitney LD, Hobgood JS (1997) The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern north pacific ocean. J Clim 10(11):2921–2930

    Article  Google Scholar 

  8. Kim M, Yang H, Kim J (2020) Sea surface temperature and high water temperature occurrence prediction using a long short-term memory model. Remote Sensing 12(21):3654

    Article  Google Scholar 

  9. Kärnä T, Ljungemyr P, Falahat S, Ringgaard I, Axell L, Korabel V, Murawski J, Maljutenko I, Lindenthal A, Jandt-Scheelke S et al (2021) Nemo-Nordic 2.0: Operational marine forecast model for the Baltic sea. Geosci Model Dev 14(9):5731–5749

    Article  Google Scholar 

  10. Cahyono AB, Saptarini D, Pribadi CB, Armono HD (2017) Estimation of sea surface temperature (SST) using split window methods for monitoring industrial activity in coastal area. Appl Mech Mater 862:90–95

    Article  Google Scholar 

  11. Barnett T, Graham N, Pazan S, White W, Latif M, Flügel M (1993) Enso and Enso-related predictability: part I—Prediction of equatorial pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J Clim 6(8):1545–1566

    Article  Google Scholar 

  12. Costa P, Gómez B, Venâncio A, Pérez E, Pérez-Muñuzuri V (2012) Using the regional ocean modelling system (Roms) to improve the sea surface temperature predictions of the Mercator ocean system. Sci Mar 76(S1):165–175

    Article  Google Scholar 

  13. ECMWF Integrated Forecasting System: IFS (2023) Technical report. http://aqua.upc.es/anywhere-catalogue-v2/?product=ecmwf-integrated-forecast-system. Accessed April 19, 2023

  14. National centers for environmental prediction: global forecast system (2023) Technical report. https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast. Accessed April 19, 2023

  15. Araújo RdA, de Mattos Neta PSG, Nedjah N, Soares SCB (2023) An error correction system for sea surface temperature prediction. Neural Computing and Applications 35:1–19

    Article  Google Scholar 

  16. Karim MR (2013) Seasonal Arima for forecasting sea surface temperature of the north zone of the bay of Bengal. Res Rev J Stat 2:23–31

    MathSciNet  Google Scholar 

  17. Gao Z, Jiang Y, He J, Wu J, Christakos G (2022) Bayesian maximum entropy interpolation of sea surface temperature data: a comparative assessment. Int J Remote Sens 43(1):148–166

    Article  Google Scholar 

  18. Kumar P, Kaleita AL (2003) Assimilation of near-surface temperature using extended Kalman filter. Adv Water Resour 26(1):79–93

    Article  Google Scholar 

  19. Larsen J, Høyer J, She J (2007) Validation of a hybrid optimal interpolation and Kalman filter scheme for sea surface temperature assimilation. J Mar Syst 65(1–4):122–133

    Article  Google Scholar 

  20. Mutai C, Ward M, Colman A (1998) Towards the prediction of the east Africa short rains based on sea-surface temperature-atmosphere coupling. Int J Climatol 18(9):975–997

    Article  Google Scholar 

  21. Wolff S, O’Donncha F, Chen B (2020) Statistical and machine learning ensemble modelling to forecast sea surface temperature. J Mar Syst 208:103347

    Article  Google Scholar 

  22. Kumar C, Podestá G, Kilpatrick K, Minnett P (2021) A machine learning approach to estimating the error in satellite sea surface temperature retrievals. Remote Sens Environ 255:112227

    Article  Google Scholar 

  23. Lins I, Moura M, Silva M, Droguett E, Veleda D, Araujo M, Jacinto C Sea surface temperature prediction via support vector machines combined with particle swarm optimization. In: Proceedings of the 10th international probabilistic safety assessment & management conference (2010)

  24. He Q, Zha C, Song W, Hao Z, Du Y, Liotta A, Perra C (2020) Improved particle swarm optimization for sea surface temperature prediction. Energies 13(6):1369

    Article  Google Scholar 

  25. Balogun A-L, Adebisi N (2021) Sea level prediction using Arima, SVR and LSTM neural network: assessing the impact of ensemble ocean-atmospheric processes on models’ accuracy. Geomat Nat Haz Risk 12(1):653–674

    Article  Google Scholar 

  26. Quan Q, Hao Z, Xifeng H, Jingchun L (2022) Research on water temperature prediction based on improved support vector regression. Neural Comput App 36:1–10

    Google Scholar 

  27. Patil K, Deo M, Ravichandran M (2016) Prediction of sea surface temperature by combining numerical and neural techniques. J Atmos Oceanic Tech 33(8):1715–1726

    Article  Google Scholar 

  28. Choi H-M, Kim M-K, Yang H (2023) Deep-learning model for sea surface temperature prediction near the Korean peninsula. Deep Sea Res Part II: Topical Stud Oceanogr 208:105262

    Article  Google Scholar 

  29. Sadhukhan B, Mukherjee S, Samanta RK (2022) A study of global temperature anomalies and their changing trends due to global warming. In: 2022 14th international conference on computational intelligence and communication networks (CICN). IEEE, pp. 660–666

  30. McCarthy GD, Haigh ID, Hirschi JJ-M, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521(7553):508–510

    Article  Google Scholar 

  31. Wahiduzzaman M, Cheung KK, Luo J-J, Bhaskaran PK (2022) A spatial model for predicting north Indian ocean tropical cyclone intensity: Role of sea surface temperature and tropical cyclone heat potential. Weather Clim Extremes 36:100431

    Article  Google Scholar 

  32. Plummer S, Lecomte P, Doherty M (2017) The ESA climate change initiative (cci): A European contribution to the generation of the global climate observing system. Remote Sens Environ 203:2–8

    Article  Google Scholar 

  33. Nielsen-Englyst P, Høyer JL, Kolbe WM, Dybkjær G, Lavergne T, Tonboe RT, Skarpalezos S, Karagali I (2023) A combined sea and sea-ice surface temperature climate dataset of the arctic, 1982–2021. Remote Sens Environ 284:113331

    Article  Google Scholar 

  34. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  35. Kartal S (2023) Assessment of the spatiotemporal prediction capabilities of machine learning algorithms on sea surface temperature data: a comprehensive study. Eng Appl Artif Intell 118:105675

    Article  Google Scholar 

  36. Mahongo S, Deo M (2013) Using artificial neural networks to forecast monthly and seasonal sea surface temperature anomalies in the western Indian ocean. The International Journal of Ocean and Climate Systems 4(2):133–150

    Article  Google Scholar 

  37. Harvey A, Skaala Ø, Borgstrøm R, Fjeldheim PT, Christine Andersen K, Rong Utne K, Askeland Johnsen I, Fiske P, Winterthun S, Knutar S et al (2022) Time series covering up to four decades reveals major changes and drivers of marine growth and proportion of repeat Spawners in an Atlantic salmon population. Ecol Evol 12(4):8780

    Article  Google Scholar 

  38. Yu C (2022) Operational oceanography as a distinct activity from marine scientific research under UNCLOS—an analysis of WMO resolution 45 (cg-18). Mar Policy 143:105131

    Article  Google Scholar 

  39. Renssen H (2022) Climate model experiments on the 4.2 ka event: the impact of tropical sea-surface temperature anomalies and desertification. Holocene 32(5):378–389

    Article  Google Scholar 

  40. Yasuda H, Fenta A, Berihun M, Inosako K, Kawai T, Belay A (2022) Water level change of lake tana, source of the blue Nile: Prediction using teleconnections with sea surface temperatures. J Great Lakes Res 48(2):468–477

    Article  Google Scholar 

  41. Van TT, Hieu NTD, Huan NH, Lien NP (2022) Investigating sea surface temperature and coral bleaching in the coastal area of Khanh Hoa province. IOP Conf Ser.: Earth Environ Sci 964:012004

    Article  Google Scholar 

  42. Ganssen G, Peeters F, Metcalfe B, Anand P, Jung S, Kroon D, Brummer G-J (2011) Quantifying sea surface temperature ranges of the Arabian sea for the past 20,000 years. Clim Past 7(4):1337–1349

    Article  Google Scholar 

  43. Xu S, Dai D, Cui X, Yin X, Jiang S, Pan H, Wang G (2023) A deep learning approach to predict sea surface temperature based on multiple modes. Ocean Model 181:102158

    Article  Google Scholar 

  44. Merchant CJ, Embury O, Roberts-Jones J, Fiedler E, Bulgin CE, Corlett GK, Good S, McLaren A, Rayner N, Morak-Bozzo S et al (2014) Sea surface temperature datasets for climate applications from phase 1 of the European space agency climate change initiative (SST CCI). Geosci Data J 1(2):179–191

    Article  Google Scholar 

  45. Kennedy JJ (2014) A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev Geophys 52(1):1–32

    Article  MathSciNet  Google Scholar 

  46. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett. https://doi.org/10.1029/2010GL043321

    Article  Google Scholar 

  47. Yasunaka S, Hanawa K (2011) Intercomparison of historical sea surface temperature datasets. Int J Climatol 31(7):1056–1073

    Article  Google Scholar 

  48. Haghbin M, Sharafati A, Motta D, Al-Ansari N, Noghani MHM (2021) Applications of soft computing models for predicting sea surface temperature: a comprehensive review and assessment. Prog Earth Planet Sci 8(1):1–19

    Article  Google Scholar 

  49. Su H, Huang L, Li W, Yang X, Yan X-H (2018) Retrieving ocean subsurface temperature using a satellite-based geographically weighted regression model. J Geophys Res: Oceans 123(8):5180–5193

    Article  Google Scholar 

  50. Han M, Feng Y, Zhao X, Sun C, Hong F, Liu C (2019) A convolutional neural network using surface data to predict subsurface temperatures in the pacific ocean. IEEE Access 7:172816–172829

    Article  Google Scholar 

  51. Xiao C, Chen N, Hu C, Wang K, Xu Z, Cai Y, Xu L, Chen Z, Gong J (2019) A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environ Model Softw 120:104502

    Article  Google Scholar 

  52. Foroozand H, Radić V, Weijs SV (2018) Application of entropy ensemble filter in neural network forecasts of tropical pacific sea surface temperatures. Entropy 20(3):207

    Article  Google Scholar 

  53. Wei L, Guan L, Qu L (2019) Prediction of sea surface temperature in the south china sea by artificial neural networks. IEEE Geosci Remote Sens Lett 17(4):558–562

    Article  Google Scholar 

  54. Zuo X, Zhou X, Guo D, Li S, Liu S, Xu C (2021) Ocean temperature prediction based on stereo spatial and temporal 4-d convolution model. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  55. Zhang Q, Wang H, Dong J, Zhong G, Sun X (2017) Prediction of sea surface temperature using long short-term memory. IEEE Geosci Remote Sens Lett 14(10):1745–1749

    Article  Google Scholar 

  56. Bhaskaran PK, Rajesh Kumar R, Barman R, Muthalagu R (2010) A new approach for deriving temperature and salinity fields in the Indian ocean using artificial neural networks. J Mar Sci Technol 15(2):160–175

    Article  Google Scholar 

  57. Aparna S, D’souza S, Arjun N (2018) Prediction of daily sea surface temperature using artificial neural networks. Int J Remote Sens 39(12):4214–4231

    Article  Google Scholar 

  58. Sun T, Feng Y, Li C, Zhang X (2022) High precision sea surface temperature prediction of long period and large area in the Indian ocean based on the temporal convolutional network and internet of things. Sensors 22(4):1636

    Article  Google Scholar 

  59. Malmgren BA, Kucera M, Nyberg J, Waelbroeck C (2001) Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography 16(5):520–530

    Article  Google Scholar 

  60. Salles R, Mattos P, Iorgulescu A-MD, Bezerra E, Lima L, Ogasawara E (2016) Evaluating temporal aggregation for predicting the sea surface temperature of the Atlantic ocean. Eco Inform 36:94–105

    Article  Google Scholar 

  61. Wang J, Deng Z (2017) Development of Modis data-based algorithm for retrieving sea surface temperature in coastal waters. Environ Monit Assess 189(6):1–12

    Article  Google Scholar 

  62. Guinehut S, Le Traon P, Larnicol G, Philipps S (2004) Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields—a first approach based on simulated observations. J Mar Syst 46(1–4):85–98

    Article  Google Scholar 

  63. Barth A, Alvera Azcárate A, Licer M, Beckers J-MA (2020) Convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations (dincae). In: EGU general assembly conference abstracts, p. 9414

  64. Broni-Bedaiko C, Katsriku FA, Unemi T, Atsumi M, Abdulai J-D, Shinomiya N, Owusu E (2019) El niño-southern oscillation forecasting using complex networks analysis of LSTM neural networks. Artif Life Robot 24(4):445–451

    Article  Google Scholar 

  65. Minnett P, Alvera-Azcárate A, Chin T, Corlett G, Gentemann C, Karagali I, Li X, Marsouin A, Marullo S, Maturi E et al (2019) Half a century of satellite remote sensing of sea-surface temperature. Remote Sens Environ 233:111366

    Article  Google Scholar 

  66. Wick GA, Jackson DL, Castro SL (2023) Assessing the ability of satellite sea surface temperature analyses to resolve spatial variability-the northwest tropical Atlantic atomic region. Remote Sens Environ 284:113377

    Article  Google Scholar 

  67. Capelle V, Hartmann J-M, Crevoisier C (2022) A full physics algorithm to retrieve nighttime sea surface temperature with IASI: toward an independent homogeneous long time-series for climate studies. Remote Sens Environ 269:112838

    Article  Google Scholar 

  68. National Centers for Environmental Information: Icoads. Website Metadata ID:( oai:edu.ucar.rda:ds540.1). https://www.remss.com/measurements/sea-surface-temperature/amsr-e. Accessed Jan 30, 2023

  69. Tokyo Climate Center: Cobe dataset (2023) Technical report. https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html Accessed Jan 30, 2023

  70. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary dataset for the community atmosphere model. J Clim 21(19):5145–5153

    Article  Google Scholar 

  71. NASA Earth science: AMSRE dataset (2023) Technical report. https://www.earthdata.nasa.gov/sensors/amsr-e Accessed February 12, 2023

  72. Met Office Hadley Centre for Climate Science and Services: Hadisst dataset (2023) Technical report. https://www.metoffice.gov.uk/hadobs/hadisst/ Accessed Feb 12, 2023

  73. Chelton DB, Risien CM (2016) Zonal and meridional discontinuities and other issues with the hadisst1. 1 dataset

  74. Jia C, Minnett PJ (2020) High latitude sea surface temperatures derived from Modis infrared measurements. Remote Sens Environ 251:112094

    Article  Google Scholar 

  75. Solomon A, Newman M (2012) Reconciling disparate twentieth-century Indo-pacific ocean temperature trends in the instrumental record. Nat Clim Change 2(9):691–699

    Article  Google Scholar 

  76. NOAA Physical Sciences Laboratory: Noaa extended reconstructed SST v5 (2023) Technical report. https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html. Accessed Feb 12, 2023

  77. NOAA Physical Sciences Laboratory: Oisst dataset (2023) Technical report. https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html. Accessed April 19, 2023

  78. NOAA Physical Sciences Laboratory: Oisst dataset (2023). Technical report. https://podaac.jpl.nasa.gov/dataset/SEVIRI_IO_SST-OSISAF-L3C-v1.0. Accessed April 19, 2023

  79. Deepanshi B, Ishan G, Deepak K, Neeraj S, et al (2022) A comprehensive review on variants of SARS-COVS-2: Challenges, solutions and open issues. Comput Commun

  80. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  81. Shirvani A, Nazemosadat SJ, Kahya E (2015) Analyses of the Persian gulf sea surface temperature: prediction and detection of climate change signals. Arab J Geosci 8:2121–2130

    Article  Google Scholar 

  82. Xue Y, Leetmaa A (2000) Forecasts of tropical pacific SST and sea level using a Markov model. Geophys Res Lett 27(17):2701–2704

    Article  Google Scholar 

  83. Seymore K, McCallum A, Rosenfeld R, et al (1999) Learning hidden Markov model structure for information extraction. In: AAAI-99 workshop on machine learning for information extraction, pp. 37–42

  84. Collins D, Reason C, Tangang F (2004) Predictability of Indian ocean sea surface temperature using canonical correlation analysis. Clim Dyn 22(5):481–497

    Article  Google Scholar 

  85. Chaudhary L, Sharma S, Sajwan M (2022) Comparative analysis of supervised machine learning algorithm. Available at SSRN 4143890

  86. Kug J-S, Kang I-S, Lee J-Y, Jhun J-G (2004) A statistical approach to Indian ocean sea surface temperature prediction using a dynamical Enso prediction. Geophys Res Lett. https://doi.org/10.1029/2003GL019209C

    Article  Google Scholar 

  87. Lins ID, Araujo M, das Chagas Moura M, Silva MA, Droguett EL (2013) Prediction of sea surface temperature in the tropical Atlantic by support vector machines. Comput Stat Data Anal 61:187–198

    Article  MathSciNet  MATH  Google Scholar 

  88. Li Q-J, Zhao Y, Liao H-L, Li J-K (2017) Effective forecast of northeast pacific sea surface temperature based on a complementary ensemble empirical mode decomposition-support vector machine method. Atmos Oceanic Sci Lett 10(3):261–267

    Article  Google Scholar 

  89. Su H, Wu X, Yan X-H, Kidwell A (2015) Estimation of subsurface temperature anomaly in the Indian ocean during recent global surface warming hiatus from satellite measurements: a support vector machine approach. Remote Sens Environ 160:63–71

    Article  Google Scholar 

  90. Ali M, Swain D, Weller R (2004) Estimation of ocean subsurface thermal structure from surface parameters: a neural network approach. Geophys Res Lett. https://doi.org/10.1029/2004GL021192

    Article  Google Scholar 

  91. Tripathi K, Das I, Sahai A (2006) Predictability of sea surface temperature anomalies in the Indian ocean using artificial neural networks

  92. Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (ostia) system. Remote Sens Environ 116:140–158

    Article  Google Scholar 

  93. Modaresi F, Araghinejad S, Ebrahimi K (2016) The combined effect of Persian gulf and Mediterranean sea surface temperature on operational forecast of spring streamflow for Karkheh basin, Iran. Sustain Water Resour Manage 2(4):387–403

    Article  Google Scholar 

  94. Patil K, Deo M (2018) Basin-scale prediction of sea surface temperature with artificial neural networks. J Atmos Oceanic Tech 35(7):1441–1455

    Article  Google Scholar 

  95. Lu W, Su H, Yang X, Yan X-H (2019) Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sens Environ 229:213–222

    Article  Google Scholar 

  96. Pflaumann U, Duprat J, Pujol C, Labeyrie LD (1996) Simmax: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic foraminifera in deep-sea sediments. Paleoceanography 11(1):15–35

    Article  Google Scholar 

  97. Chen M-T, Huang C-C, Pflaumann U, Waelbroeck C, Kucera M (2005) Estimating glacial western pacific sea-surface temperature: methodological overview and data compilation of surface sediment planktic foraminifer faunas. Quatern Sci Rev 24(7–9):1049–1062

    Article  Google Scholar 

  98. Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L, Planton S, Busalacchi A, Moura AD et al (2008) The pirata program: history, accomplishments, and future directions. Bull Am Meteor Soc 89(8):1111–1126

    Article  Google Scholar 

  99. Balsamo G, Albergel C, Beljaars A, Boussetta S, Brun E, Cloke H, Dee D, Dutra E, Muñoz-Sabater J, Pappenberger F et al (2015) Era-interim/land: a global land surface reanalysis data set. Hydrol Earth Syst Sci 19(1):389–407

    Article  Google Scholar 

  100. Takano A, Yamazaki H, Nagai T, Honda O (2009) A method to estimate three-dimensional thermal structure from satellite altimetry data. J Atmos Oceanic Tech 26(12):2655–2664

    Article  Google Scholar 

  101. Wu X, Yan X-H, Jo Y-H, Liu WT (2012) Estimation of subsurface temperature anomaly in the north Atlantic using a self-organizing map neural network. J Atmos Oceanic Tech 29(11):1675–1688

    Article  Google Scholar 

  102. Tréguier A-M, Reynaud T, Pichevin T, Barnier B, Molines J-M, De Miranda A, Messager C, Beismann J-O, Madec G, Grima N et al (1999) The clipper project: high resolution modelling of the Atlantic. Intl WOCE Newsl 36:3–5

    Google Scholar 

  103. Barker D, Renshaw R, Jermey P (2013) Regional reanalysis. In: MOSAC and SRG meetings 2013. Citeseer

  104. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  MATH  Google Scholar 

  105. Zaremba W, Sutskever I, Vinyals O (2014) Recurrent neural network regularization. arXiv preprint arXiv:1409.2329

  106. Manaswi NK, Manaswi NK (2018) RNN and LSTM. Deep learning with applications using python: chatbots and face, object, and speech recognition with tensor flow and keras, pp. 115–126

  107. Fang W, Chen Y, Xue Q (2021) Survey on research of RNN-based Spatio-temporal sequence prediction algorithms. J Big Data 3(3):97

    Article  Google Scholar 

  108. Grosse R (2017) Lecture 15: exploding and vanishing gradients. University of Toronto Computer Science, NY

    Google Scholar 

  109. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  110. Rundo F, Conoci S, Spampinato C, Leotta R, Trenta F, Battiato S (2021) Deep neuro-vision embedded architecture for safety assessment in perceptive advanced driver assistance systems: the pedestrian tracking system use-case. Front Neuroinform 15:667008

    Article  Google Scholar 

  111. Graves A (2013) Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850

  112. Jia X, Ji Q, Han L, Liu Y, Han G, Lin X (2022) Prediction of sea surface temperature in the east china sea based on LSTM neural network. Remote Sensing 14(14):3300

    Article  Google Scholar 

  113. Zhang Z, Pan X, Jiang T, Sui B, Liu C, Sun W (2020) Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network. J Marine Sci Eng 8(4):249

    Article  Google Scholar 

  114. Yu X, Shi S, Xu L, Liu Y, Miao Q, Sun M (2020) A novel method for sea surface temperature prediction based on deep learning. Math Prob Eng. https://doi.org/10.1155/2020/6387173

    Article  Google Scholar 

  115. Cao J, Li Z, Li J (2019) Financial time series forecasting model based on CEEMDAN and LSTM. Physica A 519:127–139

    Article  Google Scholar 

  116. Xie J, Zhang J, Yu J, Xu L (2019) An adaptive scale sea surface temperature predicting method based on deep learning with attention mechanism. IEEE Geosci Remote Sens Lett 17(5):740–744

    Article  Google Scholar 

  117. Liu J, Zhang T, Han G, Gou Y (2018) TD-LSTM: temporal dependence-based LSTM networks for marine temperature prediction. Sensors 18(11):3797

    Article  Google Scholar 

  118. Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang H-M (2017) Extended reconstructed sea surface temperature, version 5 (ERSSTV5): upgrades, validations, and intercomparisons. J Clim 30(20):8179–8205

    Article  Google Scholar 

  119. Wei L, Guan L, Qu L, Guo D (2020) Prediction of sea surface temperature in the china seas based on long short-term memory neural networks. Remote Sensing 12(17):2697

    Article  Google Scholar 

  120. Sarkar PP, Janardhan P, Roy P (2020) Prediction of sea surface temperatures using deep learning neural networks. SN Appl Sci 2(8):1–14

    Article  Google Scholar 

  121. Pisano A, Nardelli BB, Tronconi C, Santoleri R (2016) The new Mediterranean optimally interpolated pathfinder AVHRR SST dataset (1982–2012). Remote Sens Environ 176:107–116

    Article  Google Scholar 

  122. Xiao C, Chen N, Hu C, Wang K, Gong J, Chen Z (2019) Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-adaboost combination approach. Remote Sens Environ 233:111358

    Article  Google Scholar 

  123. Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains. Proc 2005 IEEE Int Joint Conf Neural Network 2:729–7342. https://doi.org/10.1109/IJCNN.2005.1555942

    Article  Google Scholar 

  124. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model. IEEE Trans Neural Networks 20(1):61–80

    Article  Google Scholar 

  125. Sun Y, Yao X, Bi X, Huang X, Zhao X, Qiao B (2021) Time-series graph network for sea surface temperature prediction. Big Data Res 25:100237

    Article  Google Scholar 

  126. Geng X, He X, Xu L, Yu J (2022) Graph correlated attention recurrent neural network for multivariate time series forecasting. Inf Sci 606:126–142

    Article  Google Scholar 

  127. Taylor J, Feng M A deep learning model for forecasting global monthly mean sea surface temperature anomalies. arXiv preprint arXiv:2202.09967 (2022)

  128. Wang T, Li Z, Geng X, Jin B, Xu L (2022) Time series prediction of sea surface temperature based on an adaptive graph learning neural model. Future Internet 14(6):171

    Article  Google Scholar 

  129. Xie J, Ouyang J, Zhang J, Jin B, Shi S, Xu L (2021) An evolving sea surface temperature predicting method based on multidimensional spatiotemporal influences. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  130. Khosravi A, Koury R, Machado L, Pabon J (2018) Prediction of wind speed and wind direction using artificial neural network, support vector regression and adaptive neuro-fuzzy inference system. Sustain Energy Technol Assess 25:146–160

    Google Scholar 

  131. Zhang X, Li Y, Frery AC, Ren P (2021) Sea surface temperature prediction with memory graph convolutional networks. IEEE Geosci Remote Sens Lett 19:1–5

    Google Scholar 

  132. Zhou Z-H, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263

    Article  MathSciNet  MATH  Google Scholar 

  133. De Mattos Neto PS, Cavalcanti GD, de O Santos Júnior DS, Silva EG (2022) Hybrid systems using residual modeling for sea surface temperature forecasting. Sci Rep 12(1):1–16

  134. Hou S, Li W, Liu T, Zhou S, Guan J, Qin R, Wang Z (2022) Mimo: a unified Spatio-temporal model for multi-scale sea surface temperature prediction. Remote Sensing 14(10):2371

    Article  Google Scholar 

  135. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

  136. Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-C (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. Adv Neural Inf Process Syst 28

  137. Liu J, Ong GP, Chen X Graphsage-based traffic speed forecasting for segment network with sparse data. IEEE Transactions on Intelligent Transportation Systems (2020)

  138. Yang Y, Dong J, Sun X, Lima E, Mu Q, Wang X (2017) A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci Remote Sens Lett 15(2):207–211

    Article  Google Scholar 

  139. Patil KR, Iiyama M (2022) Deep learning models to predict sea surface temperature in Tohoku region. IEEE Access 10:40410–40418

    Article  Google Scholar 

  140. Qiao B, Wu Z, Tang Z, Wu G (2022) Sea surface temperature prediction approach based on 3d CNN and LSTM with attention mechanism. In: 2022 24th international conference on advanced communication technology (ICACT). IEEE, pp. 342–347

  141. Kug J-S, Lee J-Y, Kang I-S (2007) Global sea surface temperature prediction using a multimodel ensemble. Mon Weather Rev 135(9):3239–3247

    Article  Google Scholar 

  142. Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the ne pacific. Geophys Res Lett 42(9):3414–3420

    Article  Google Scholar 

  143. Wu Z, Jiang C, Conde M, Deng B, Chen J (2019) Hybrid improved empirical mode decomposition and BP neural network model for the prediction of sea surface temperature. Ocean Sci 15(2):349–360

    Article  Google Scholar 

  144. Bengtsson L (1985) Medium-range forecasting-the experience of ECMWF. Bull Am Meteor Soc 66(9):1133–1146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, L., Sharma, S. & Sajwan, M. Systematic Literature Review of Various Neural Network Techniques for Sea Surface Temperature Prediction Using Remote Sensing Data. Arch Computat Methods Eng 30, 5071–5103 (2023). https://doi.org/10.1007/s11831-023-09970-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09970-5

Navigation