Skip to main content
Log in

A Comprehensive Review on Segmentation Techniques for Satellite Images

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Segmentation of satellite images is the noteworthy and essential step for better understanding and analysis in various applications such as disaster and crisis management support, agriculture land detection, water body detection, identification of roads, buildings, transformation analysis of forested ecosystems, and translating satellite imagery to maps, where the satellite image can be utilized for remotely monitoring any specified region. This manuscript contemplates the comprehensive and comparative analysis of existing satellite image segmentation techniques with their advantages, disadvantages, experimental results, and futuristic discussion. The comprehensive and comparative analysis provides the basic platform and a new direction of research to perspective readers working in this area. In this review, existing segmentation techniques are extensively analyzed and categorized on the basis of their methodology similarities. In the reviewing process of state-of-the-art satellite image segmentation techniques, it has been noticed that the problems of semantic and instance segmentation are solved effectively using deep learning approaches. The entire review process exhibits the problem of the limited dataset, limited time to train a network, objects appearing differently from different imaging sensors, and class imbalance in semantic and instance segmentation. A fully convolutional network, U-Net, and its variants are utilized to solve these problems by applying transfer learning, synthetic data generation, artificially generated noisy data, and residual networks. This manuscript focuses on the existing work and helps to provide comparative results, challenges, and further improvement areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

ABC:

Artificial Bee Colony

ACDE:

Automatic Clustering using modified Differential Evolution

ACPAHS:

Automatic Clustering due to Parameter Adaptive Harmony Search

ALO:

Ant-Lion Optimization

ARI:

Adjusted Rand Index

AVHRR:

Advanced Very High-Resolution Radiometer

BBM:

Bivariate Beta type-II Mixture

BGAUM:

Bivariate GAUssian Mixture

CNN:

Convolutional Neural Network

CRF:

Conditional Random Field

CS:

Cuckoo Search

DB:

Davies-Bouldin

DCE:

Dual Cross Entropy

DCNN:

Deep Convolutional Neural Network

DCPSO:

Dynamic Clustering using Particle Swarm Optimization

DE:

Differential Evolution

DFL:

Dual Focal Loss

DHHO/M:

Dynamic HHO with Mutation

DSN:

Deeply Supervised Nets

EM:

Expectation-Maximization

EMA:

Exchange Market Algorithm

EMT:

Edge Maximization Technique

FCIDE:

Fuzzy Clustering using Improved Differential Evolution

FCM:

Fuzzy C-Means

FCN:

Fully Convolutional Network

FL:

Focal Loss

FSIM:

Feature Similarity Index

GA:

Genetic Algorithm

GAFC:

Genetic Algorithm based Fuzzy Clustering C-means

GAFPSC:

Genetic Algorithm with the Fuzzy Point Symmetry-based Clustering

GAPS:

Genetic Algorithm with Point Symmetry

GCUK:

Genetic Clustering with an Unknown number of clusters

GHMRF:

Gaussian Hidden Markov Random Field

GOA:

Grasshopper Optimization Algorithm

GWO:

Grey Wolf Optimizer

HE:

Holder Exponent

HHO:

Harris Hawks Optimization

HMS:

Human Mental Search

HNN:

Hopfield Neural network

HSI:

Hue Saturation and Intensity

HSV:

Hue Saturation Value

IDSA:

Improved Differential Search Algorithm

IEPO:

Improved Emperor Penguin Optimization

IOU:

Intersection Over Union

IRS:

Indian Remote Sensing

ISODATA:

Iterative Self-Organizing Data Analysis

KHA:

Krill Herd Algorithm

KI:

Kappa Index

LMVO:

Multi-Verse Optimization Algorithm based on L‘evy flight Improvement

LOG:

Laplacian of Gaussian

MABC:

Modified Artificial Bee Colony Algorithm

MAE:

Mean Absolute Error

MC-WBDN:

Multi-Channel Water Body Detection Network

MCE:

Minimum Cross Entropy

MCVGAPS:

Multicenter based Automatic Clustering Technique

MFO:

Moth Flame Optimization

mIOU:

mean IOU

MLP:

Multi-Layer Perceptron

MNDWI:

Modified Normalized Difference Water Index

MoDEFC:

Modified Differential Evolution-based Fuzzy Clustering

MQE:

Mean Quadratic Error

MSE:

Mean Squared Error

MSEPO:

Multi-strategy Emperor Penguin optimizer

MSS:

Multispectral Scanner System

MTMFO:

Multilevel Thresholding Moth-Flame Optimization

MVO:

Multiverse Optimization

NAE:

Normalized Absolute Error

NCC:

Normalized Cross Correlation

PA-FoV:

Pixel Adaptive Field of View

PAHS:

Parameter Adaptive Harmony Search

PSNR:

Peak Signal-to-Noise Ratio

PSO:

Particle Swarm Optimization

RISA:

Region-based Image Segmentation Algorithm

RMSE:

Root Mean Square Error

SCM:

Shadowed Clustering Method

SDC:

Sorensen-Dice Coefficient

SEM:

Stochastic Expectation-Maximization

SNR:

Signal to Noise Ratio

SSIM:

Structural Similarity Index

SVM:

Support Vector Machine

SVMeFC:

SVM Ensemble Fuzzy clustering

SWIR:

Short-Wave Infrared

Sym-index:

Symmetry Distance-based Cluster Validity Index

TLBO:

Teaching Learning-based Optimization

TLMVO:

Tournament-based L‘evy Multiverse Optimization

TM:

Thematic Mapper

TSOM:

Kohonen Self Organizing Map with Thresholding

UAVs:

Unmanned Aerial Vehicles

VHR:

Very High Resolution

WCE:

Weighted Cross Entropy

WDO:

Wind Driven Optimization

XB:

Xie-Beni

YIQ:

Luminance in Phase Quadrature

References

  1. Zemp M, Armstrong R, Gärtner-Roer I, Haeberli W, Hoelzle M, Kääb A, Kargel JS, Khalsa SJS, Leonard GJ, Paul F et al (2014) Introduction: global glacier monitoring-a long-term task integrating in situ observations and remote sensing. In: Global land ice measurements from space. Springer, pp 1–21

  2. Kääb A, Huggel C, Paul F, Wessels R, Raup B, Kieffer H, Kargel J (2002) Glacier monitoring from ASTER imagery: accuracy and applications. Proceedings of EARSeL-LISSIG-workshop observing our cryosphere from space 2:43–53

    Google Scholar 

  3. Martin S (2014) An introduction to ocean remote sensing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Emery B, Camps A (2017) Introduction to satellite remote sensing: atmosphere, ocean, land and cryosphere applications. Elsevier

    Google Scholar 

  5. Atzberger C (2013) Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 5(2):949–981

    Article  Google Scholar 

  6. Van Westen C (2000) Remote sensing for natural disaster management. Int Arch Photogramm Remote Sens 33(B7/4; PART 7):1609–1617

  7. Chaudhuri D, Kushwaha NK, Samal A (2012) Semi-automated road detection from high resolution satellite images by directional morphological enhancement and segmentation techniques. IEEE J Sel Top Appl Earth Obs Remote Sens 5(5):1538–1544

    Article  Google Scholar 

  8. Khryaschev V, Ivanovsky L (2019) Urban areas analysis using satellite image segmentation and deep neural network. In: E3S web of conferences, vol 135, p. 01064. EDP Sciences

  9. Chakraborty D, Sen GK, Hazra S (2009) High-resolution satellite image segmentation using hölder exponents. J Earth Syst Sci 118(5):609–617

    Article  Google Scholar 

  10. Saha I, Maulik U, Bandyopadhyay S, Plewczynski D (2011) SVMeFC: SVM ensemble fuzzy clustering for satellite image segmentation. IEEE Geosci Remote Sens Lett 9(1):52–55

    Article  Google Scholar 

  11. Tambe RG, Talbar SN, Chavan SS (2021) Deep multi-feature learning architecture for water body segmentation from satellite images. J Vis Commun Image Represent 77:103141

    Article  Google Scholar 

  12. Banskota A, Kayastha N, Falkowski MJ, Wulder MA, Froese RE, White JC (2014) Forest monitoring using landsat time series data: a review. Can J Remote Sens 40(5):362–384

    Article  Google Scholar 

  13. Huete AR (2012) Vegetation indices, remote sensing and forest monitoring. Geography Compass 6(9):513–532

    Article  Google Scholar 

  14. Hossain MD, Chen D (2019) Segmentation for object-based image analysis (obia): a review of algorithms and challenges from remote sensing perspective. ISPRS J Photogramm Remote Sens 150:115–134

    Article  Google Scholar 

  15. Gonzalez RC (2009) Digital image processing. Pearson Education, New Delhi

    Google Scholar 

  16. Al-Amri SS, Kalyankar N, Khamitkar S (2010) Image segmentation by using edge detection. Int J Comput Sci Eng 2(3):804–807

    Google Scholar 

  17. Wang Z, Wang K, Yang F, Pan S, Han Y (2018) Image segmentation of overlapping leaves based on Chan-Vese model and Sobel operator. Inf Process Agric 5(1):1–10

    Google Scholar 

  18. Fergani B, Kholladi M-K (2016) A discrete particle swarm optimisation algorithm for geographical map contour reconstruction. In: 2016 sixth international conference on digital information and communication technology and its applications (DICTAP). IEEE, pp 142–144

  19. Rao TVN, Govardhan A, Badashah SJ (2011) Statistical analysis for performance evaluation of image segmentation quality using edge detection algorithms. Int J Adv Netw Appl 3(3):1184

    Google Scholar 

  20. Dhivya R, Prakash R (2019) Edge detection of satellite image using fuzzy logic. Cluster Comput 22(5):11891–11898

    Article  Google Scholar 

  21. Boskovitz V, Guterman H (1997) Edge detection and image segmentation: Two sides of the same coin. In: Proceedings of 6th international fuzzy systems conference, vol 2. IEEE, pp 1063–1068

  22. Bhandari AK, Singh VK, Kumar A, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapur’s entropy. Expert Syst Appl 41(7):3538–3560

    Article  Google Scholar 

  23. Bhandari AK, Kumar A, Singh GK (2015) Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. Expert Syst Appl 42(22):8707–8730

    Article  Google Scholar 

  24. Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapur’s, otsu and tsallis functions. Expert Syst Appl 42(3):1573–1601

    Article  Google Scholar 

  25. Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel thresholding for satellite image segmentation with moth-flame based optimization. In: 2016 13th international joint conference on computer science and software engineering (JCSSE). IEEE, pp 1–6

  26. Jia H, Peng X, Song W, Lang C, Xing Z, Sun K (2019) Multiverse optimization algorithm based on lévy flight improvement for multithreshold color image segmentation. IEEE Access 7:32805–32844

    Article  Google Scholar 

  27. Jia H, Peng X, Song W, Oliva D, Lang C, Li Y (2019) Masi entropy for satellite color image segmentation using tournament-based lévy multiverse optimization algorithm. Remote Sens 11(8):942

    Article  Google Scholar 

  28. Jia H, Sun K, Song W, Peng X, Lang C, Li Y (2019) Multi-strategy emperor penguin optimizer for RGB histogram-based color satellite image segmentation using masi entropy. IEEE Access 7:134448–134474

    Article  Google Scholar 

  29. Byun YG, Han YK, Chae TB (2013) A multispectral image segmentation approach for object-based image classification of high resolution satellite imagery. KSCE J Civil Eng 17(2):486–497

    Article  Google Scholar 

  30. Wang Z, Jensen JR, Im J (2010) An automatic region-based image segmentation algorithm for remote sensing applications. Environ Modell Softw 25(10):1149–1165

    Article  Google Scholar 

  31. Gigandet X, Cuadra MB, Pointet A, Cammoun L, Caloz R, Thiran J-P (2005) Region-based satellite image classification: method and validation. In: IEEE international conference on image processing 2005, vol 3, p. 832. IEEE

  32. Mueller M, Segl K, Kaufmann H (2004) Edge-and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognit 37(8):1619–1628

    Article  Google Scholar 

  33. Saha S, Bandyopadhyay S (2008) Application of a new symmetry-based cluster validity index for satellite image segmentation. IEEE Geosci Remote Sens Lett 5(2):166–170

    Article  Google Scholar 

  34. Saha S, Bandyopadhyay S (2009) Application of a multiseed-based clustering technique for automatic satellite image segmentation. IEEE Geosci Remote Sens Lett 7(2):306–308

    Article  Google Scholar 

  35. Rekik A, Zribi M, Hamida AB, Benjelloun M et al (2009) An optimal unsupervised satellite image segmentation approach based on pearson system and k-means clustering algorithm initialization. Methods 8(9)

  36. Hasanzadeh M, Kasaei S (2010) A multispectral image segmentation method using size-weighted fuzzy clustering and membership connectedness. IEEE Geosci Remote Sens Lett 7(3):520–524

    Article  Google Scholar 

  37. Mitra S, Kundu PP (2011) Satellite image segmentation with shadowed c-means. Information Sciences 181(17):3601–3613

    Article  Google Scholar 

  38. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

  39. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241

  40. Li R, Liu W, Yang L, Sun S, Hu W, Zhang F, Li W (2018) Deepunet: A deep fully convolutional network for pixel-level sea-land segmentation. IEEE J Sel Top Appl Earth Obs Remote Sens 11(11):3954–3962

    Article  Google Scholar 

  41. Vetrivel A, Kerle N, Gerke M, Nex F, Vosselman G (2016) Towards automated satellite image segmentation and classification for assessing disaster damage using data-specific features with incremental learning

  42. Dey, V., Zhang, Y., Zhong, M.: A review on image segmentation techniques with remote sensing perspective, vol 38. na Vienna, Austria (2010)

  43. Jain S, Laxmi V (2018) Color image segmentation techniques: a survey. In: Proceedings of the international conference on microelectronics, computing & communication systems. Springer, pp 189–197

  44. Deepika N, Vishnu K (2015) Different techniques for satellite image segmentation. In: 2015 online international conference on green engineering and technologies (IC-GET). IEEE, pp 1–6

  45. Pandey BN, Rana A et al (2018) A literature survey of optimization techniques for satellite image segmentation. In: 2018 international conference on advanced computation and telecommunication (ICACAT). IEEE, pp 1–5

  46. EOS.com. https://eos.com/make-an-analysis/

  47. Melas DE, Wilson SP (2002) Double markov random fields and bayesian image segmentation. IEEE Trans Signal Process 50(2):357–365

    Article  MathSciNet  MATH  Google Scholar 

  48. Joulin A, Bach F, Ponce J (2010) Discriminative clustering for image co-segmentation. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE, pp 1943–1950

  49. Kim S, Nowozin S, Kohli P, Yoo C (2011) Higher-order correlation clustering for image segmentation. Adv Neural Inf Process Syst 24

  50. Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A grey wolf optimizer based automatic clustering algorithm for satellite image segmentation. Procedia Comput Sci 115:415–422

    Article  Google Scholar 

  51. Parvathi P, Rajeswari R (2016) A hybrid FCM-ALO based technique for image segmentation. In: 2016 IEEE international conference on advances in computer applications (ICACA). IEEE, pp 342–345

  52. Kumar V, Chhabra JK, Kumar D (2016) Automatic data clustering using parameter adaptive harmony search algorithm and its application to image segmentation. J Intell Syst 25(4):595–610

    Google Scholar 

  53. Ghassemi S, Fiandrotti A, Francini G, Magli E (2019) Learning and adapting robust features for satellite image segmentation on heterogeneous data sets. IEEE Transactions on Geoscience and Remote Sensing 57(9):6517–6529

    Article  Google Scholar 

  54. Yu R, Fu X, Jiang H, Wang C, Li X, Zhao M, Ying X, Shen H (2018) Remote sensing image segmentation by combining feature enhanced with fully convolutional network. In: international conference on neural information processing. Springer, pp 406–415

  55. Gautam D, Ahmed M (2014) Efficient fuzzy edge detection using successive otsu’s method. In: International conference for convergence for technology-2014. IEEE, pp 1–5

  56. Gong X-Y, Su H, Xu D, Zhang Z-T, Shen F, Yang H-B (2018) An overview of contour detection approaches. Int J Autom Comput 15(6):656–672

    Article  Google Scholar 

  57. Bhandari AK, Kumar A, Chaudhary S, Singh GK (2017) A new beta differential evolution algorithm for edge preserved colored satellite image enhancement. Multidimens Syst Signal Process 28:495–527

    Article  MATH  Google Scholar 

  58. Kumar B, Ranjan RK, Husain A (2021) A multi-objective enhanced fruit fly optimization (mo-efoa) framework for despeckling sar images using dtcwt based local adaptive thresholding. Int J Remote Sens 42(14):5493–5514

    Article  Google Scholar 

  59. Rout S, Srivastava P, Majumdar J et al (1998) Multi-modal image segmentation using a modified hopfield neural network. Pattern Recognit 31(6):743–750

    Article  Google Scholar 

  60. Rahaman J, Sing M (2021) An efficient multilevel thresholding based satellite image segmentation approach using a new adaptive cuckoo search algorithm. Expert Syst Appl 174:114633

    Article  Google Scholar 

  61. Abd Elaziz M, Oliva D, Ewees AA, Xiong S (2019) Multi-level thresholding-based grey scale image segmentation using multi-objective multi-verse optimizer. Expert Syst Appl 125:112–129

    Article  Google Scholar 

  62. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: algorithm and applications. Fut Gener Comput Syst 97:849–872

    Article  Google Scholar 

  63. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Dynamic harris hawks optimization with mutation mechanism for satellite image segmentation. Remote Sens 11(12):1421

    Article  Google Scholar 

  64. Jia H, Lang C, Oliva D, Song W, Peng X (2019) Hybrid grasshopper optimization algorithm and differential evolution for multilevel satellite image segmentation. Remote Sens 11(9):1134

    Article  Google Scholar 

  65. Sathya P, Kalyani R, Sakthivel V (2021) Color image segmentation using kapur, otsu and minimum cross entropy functions based on exchange market algorithm. Expert Systems with Applications 172:114636

    Article  Google Scholar 

  66. Bagwari N, Kumar S, Verma VS (2022) Comparative analysis of differential evolution algorithm using shannon, fuzzy, and cosine similarity entropy functions for satellite image segmentation. In: 2022 3rd international conference on issues and challenges in intelligent computing techniques (ICICT), pp 1–6. https://doi.org/10.1109/ICICT55121.2022.10064605

  67. Earth observatory NASA. https://earthobservatory.nasa.gov/images?eocn=topnav &eoci=imag

  68. Mortensen EN, Barrett WA (1999) Toboggan-based intelligent scissors with a four-parameter edge model. In: Proceedings. 1999 IEEE computer society conference on computer vision and pattern recognition (Cat. No PR00149), vol 2. IEEE, pp 452–458

  69. Gonzalez RC, Woods RE et al (2002) Digital image processing, 2nd edn. Publishing House of Electronics Industry, Beijing, p 455

    Google Scholar 

  70. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  71. Yuan J, Wang D, Li R (2013) Remote sensing image segmentation by combining spectral and texture features. IEEE Trans Geosci Remote Sens 52(1):16–24

    Article  Google Scholar 

  72. Shahbaz M, Guergachi A, Noreen A, Shaheen M (2012) Classification by object recognition in satellite images by using data mining. Proceedings of the world congress on engineering 1:4–6

    Google Scholar 

  73. Khurshid H, Khan MF (2014) Segmentation and classification using logistic regression in remote sensing imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 8(1):224–232

    Article  Google Scholar 

  74. Parihar AS (2017) Satellite image segmentation based on differential evolution. In: 2017 international conference on intelligent sustainable systems (ICISS). IEEE, pp 621–624

  75. Awad M (2010) An unsupervised artificial neural network method for satellite image segmentation. Int Arab J Inf Technol 7(2):199–205

    MathSciNet  Google Scholar 

  76. Bandyopadhyay S, Saha S (2007) Gaps: A clustering method using a new point symmetry-based distance measure. Pattern Recognit 40(12):3430–3451

    Article  MATH  Google Scholar 

  77. Chou C-H, Su M-C, Lai E (2002) Symmetry as a new measure for cluster validity. In: 2nd WSEAS int. conf. on scientific computation and soft computing. Citeseer, pp 209–213

  78. Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intell 24(12):1650–1654

    Article  Google Scholar 

  79. Xie XL, Beni G (1991) A validity measure for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

  80. Lingras P, West C (2004) Interval set clustering of web users with rough k-means. J Intell Inf Syst 23(1):5–16

    Article  MATH  Google Scholar 

  81. Arab TB, Zribi M, Masmoudi A (2013) Unsupervised satellite image segmentation using a bivariate beta type-ii mixture model. In: 2013 IEEE 9th international conference on computational cybernetics (ICCC). IEEE, pp 95–100

  82. Sammouda R, Touir A, Reyad YA, Adgaba N, Ai-Ghamdi A, Hegazy SS (2013) Adapting artificial hopfield neural network for agriculture satellite image segmentation. In: 2013 international conference on computer applications technology (ICCAT). IEEE, pp 1–7

  83. Ganesan P, Rajini V (2014) Yiq color space based satellite image segmentation using modified fcm clustering and histogram equalization. In: 2014 international conference on advances in electrical engineering (ICAEE). IEEE, pp 1–5

  84. Ganesan P, Rajini V (2014) Assessment of satellite image segmentation in rgb and hsv color space using image quality measures. In: 2014 international conference on advances in electrical engineering (ICAEE). IEEE, pp 1–5

  85. Pal R, Mukhopadhyay S, Chakraborty D, Suganthan PN (2022) Very high-resolution satellite image segmentation using variable-length multi-objective genetic clustering for multi-class change detection. J King Saud Univ-Comput Inf Sci 34:9964–9976

    Google Scholar 

  86. Mousavirad SJ, Ebrahimpour-Komleh H (2020) Human mental search-based multilevel thresholding for image segmentation. Appl Soft Comput 97:105427

    Article  Google Scholar 

  87. Xing Z (2020) An improved emperor penguin optimization based multilevel thresholding for color image segmentation. Knowl-Based Syst 194:105570

    Article  Google Scholar 

  88. Mechkouri SE, El Joumani S, Zennouhi R, Masmoudi L (2020) Multi-objective optimization for worldview image segmentation funded on the entropies of tsallis and rényi. Multimed Tools Appl 79(41):30637–30652

    Article  Google Scholar 

  89. Chen B, Qi X, Wang Y, Zheng Y, Shim HJ, Shi Y-Q (2018) An improved splicing localization method by fully convolutional networks. IEEE Access 6:69472–69480

    Article  Google Scholar 

  90. John D, Zhang C (2022) An attention-based u-net for detecting deforestation within satellite sensor imagery. Int J Appl Earth Obs Geoinf 107:102685

    Google Scholar 

  91. Mohanty SP, Czakon J, Kaczmarek KA, Pyskir A, Tarasiewicz P, Kunwar S, Rohrbach J, Luo D, Prasad M, Fleer S et al (2020) Deep learning for understanding satellite imagery: an experimental survey. Front Artif Intell 85

  92. Shi G, Zuo B (2022) Cloudrcnn: a framework based on deep neural networks for semantic segmentation of satellite cloud images. Appl Sci 12(11):5370

    Article  Google Scholar 

  93. Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834–848

    Article  Google Scholar 

  94. Isikdogan LF, Bovik A, Passalacqua P (2019) Seeing through the clouds with deepwatermap. IEEE Geosci Remote Sens Lett 17(10):1662–1666

    Article  Google Scholar 

  95. Liu Y, Yao J, Lu X, Xie R, Li L (2019) Deepcrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 338:139–153

    Article  Google Scholar 

  96. Yuan K, Zhuang X, Schaefer G, Feng J, Guan L, Fang H (2021) Deep-learning-based multispectral satellite image segmentation for water body detection. IEEE J Sel Top Appl Earth Obs Remote Sens 14:7422–7434

    Article  Google Scholar 

  97. Zhou L, Zhang C, Wu M (2018) D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 182–186

  98. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp 801–818

  99. Pinheiro PO, Lin T-Y, Collobert R, Dollár P (2016) Learning to refine object segments. In: European conference on computer vision. Springer, pp 75–91

  100. Kemker R, Salvaggio C, Kanan C (2018) Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J Photogramm Remote Sens 145:60–77

    Article  Google Scholar 

  101. Nalepa J, Myller M, Cwiek M, Zak L, Lakota T, Tulczyjew L, Kawulok M (2021) Towards on-board hyperspectral satellite image segmentation: understanding robustness of deep learning through simulating acquisition conditions. Remote Sens 13(8):1532

    Article  Google Scholar 

  102. Yeung HWF, Zhou M, Chung YY, Moule G, Thompson W, Ouyang W, Cai W, Bennamoun M (2022) Deep-learning-based solution for data deficient satellite image segmentation. Expert Syst Appl 191:116210

    Article  Google Scholar 

  103. Mu F, Li J, Shen N, Huang S, Pan Y, Xu T (2022) Pixel-adaptive field-of-view for remote sensing image segmentation. IEEE Geosci Remote Sens Lett 19:1–5

    Article  Google Scholar 

  104. Hossain MS, Betts JM, Paplinski AP (2021) Dual focal loss to address class imbalance in semantic segmentation. Neurocomputing 462:69–87

    Article  Google Scholar 

  105. Dong J, Wang W (2011) Casia tampered image detection evaluation (tide) database, v1. 0 and v2. 0. Chinese Academy of Sciences

  106. Ng T-T, Chang S-F, Sun Q (2004) A data set of authentic and spliced image blocks. Columbia University, ADVENT Technical Report, pp 203–2004

    Google Scholar 

  107. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst 28

  108. Chollet F (2016) Building autoencoders in keras. The Keras Blog 14

  109. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1492–1500

  110. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) Lightgbm: a highly efficient gradient boosting decision tree. Adv Neural Inf Process Syst 30:3146

    Google Scholar 

  111. Chaurasia A, Culurciello E (2017) Linknet: Exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE visual communications and image processing (VCIP). IEEE, pp 1–4

  112. Chen L-C, Yang Y, Wang J, Xu W, Yuille AL (2016) Attention to scale: Scale-aware semantic image segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3640–3649

  113. Yu B, Yang A, Chen F, Wang N, Wang L (2022) SNNFD, spiking neural segmentation network in frequency domain using high spatial resolution images for building extraction. Int J Appl Earth Obs Geoinf 112:102930

    Google Scholar 

  114. Tappan JH, Wright ME, Sistler FE (1987) Error sources in a digital image analysis system. Comput Electron Agric 2(2):109–118

    Article  Google Scholar 

  115. Wang M, Wan Q, Gu L, Song T (2013) Remote-sensing image retrieval by combining image visual and semantic features. Int J Remote Sens 34(12):4200–4223

    Article  Google Scholar 

  116. Japkowicz N, Stephen S (2002) The class imbalance problem: a systematic study. Intell Data Anal 6(5):429–449

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the reviewers who devoted their valuable time and effort to reviewing the manuscript. We sincerely appreciate all valuable comments and suggestions, which helped to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest. All authors equally contributed to this review manuscript. No financial interests are reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagwari, N., Kumar, S. & Verma, V.S. A Comprehensive Review on Segmentation Techniques for Satellite Images. Arch Computat Methods Eng 30, 4325–4358 (2023). https://doi.org/10.1007/s11831-023-09939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09939-4

Navigation