Skip to main content

Advertisement

Log in

Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Renewable energy sources are present copiously in the nature and are good for environmental conservation as they restore themselves and thus have considerable potential in the near future. It is hence important to concentrate on the forecast of these energy sources in order to make effective use of them as soon as possible. This paper is focused primarily on solar energy. There are many approaches that could be applied for the prediction of global solar radiation (GSR). In the field of artificial intelligence (AI), the forecasting of solar resources has moved from conventional mathematical approaches to the use of intelligent techniques. The extent to which data based decisions are made for planning such as judicious and functional for the solar energy sector has been increased to a large extent by this giant step. In modelling challenging and unpredictable connections in between a set of input data and output data along with specific patterns that occur between datasets, AI techniques have demonstrated increasing reliability. In this regard, purpose of this paper is to provide a synopsis of solar energy forecasting methods utilizing machine learning and deep learning approaches to the best of our understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adedeji PA, Akinlabi SA, Madushele N, Olatunji OO (2020) Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: a mini review. J Clean Prod 269:122104. https://doi.org/10.1016/j.jclepro.2020.122104

    Article  Google Scholar 

  2. O’Leary D, Kubby J (2017) Feature selection and ANN solar power prediction. J Renew Energy 2017:1–7. https://doi.org/10.1155/2017/2437387

    Article  Google Scholar 

  3. Zendehboudi A, Abdul Baseer A, Saidur R (2018) Application of support vector machine models for forecasting solar and wind energy resources: a review. J Clean Prod 199:272–285. https://doi.org/10.1016/j.jclepro.2018.07.164

    Article  Google Scholar 

  4. Bonissone P (1998) Soft computing: the convergence of emerging reasoning technologies. Soft Comput. https://doi.org/10.1007/s005000050002

    Article  Google Scholar 

  5. Wang F, Zhang Z, Liu C, Yu Y, Pang S, Duić N, Shafie-Khah M, Catalão JPS (2019) Generative adversarial networks and convolutional neural networks based weather classification model for day ahead short-term photovoltaic power forecasting. Energy Convers Manag 181:443–462. https://doi.org/10.1016/j.enconman.2018.11.074

    Article  Google Scholar 

  6. Wang H, Lei Z, Zhang X, Zhou B, Peng J (2019) A review of DL for renewable energy forecasting. Energy Convers Manag 198:111799. https://doi.org/10.1016/j.enconman.2019.111799

    Article  Google Scholar 

  7. Bedi J, Toshniwal D (2019) DL framework to forecast electricity demand. Appl Energy 238:1312–1326. https://doi.org/10.1016/j.apenergy.2019.01.113

    Article  Google Scholar 

  8. Alkhayat G, Mehmood R (2021) A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy AI 4:100060

    Article  Google Scholar 

  9. Voyant C, Notton G, Kalogirou S, Nivet M-L, Paoli C, Motte F, Fouilloy A (2017) ML methods for solar radiation forecasting: a review. Renew Energy 105:569–582. https://doi.org/10.1016/j.renene.2016.12.095

    Article  Google Scholar 

  10. Abuella M, Chowdhury B (2015) Solar power forecasting using artificial neural networks. In: 2015 North American Power Symposium (NAPS) https://doi.org/10.1109/NAPS.2015.7335176

  11. Abuella M, Chowdhury B (2015) Solar power probabilistic forecasting by using multiple linear regression analysis. In: IEEE Southeast conference proceedings, Ft. Lauderdale

  12. Almonacid F, Perez-Higueras P, Fernández E, Hontoria L (2014) A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers Manage 85:389–398. https://doi.org/10.1016/j.enconman.2014.05.090

    Article  Google Scholar 

  13. Drif M, Pérez-Higueras P, Aguilera J, Almonacid G, Gómez P, De la Casa J et al (2007) Univer project. A grid connected photovoltaic system of 200 kWp at Jaén University. Overview and performance analysis. Sol Energy Mater Sol Cells 91:670–80

    Article  Google Scholar 

  14. Premalatha N, Arasu AV (2016) Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. J Appl Res Technol 14(3):206–214. https://doi.org/10.1016/j.jart.2016.05.001

    Article  Google Scholar 

  15. Al-Alawi SM, Al-Hinai HA (1998) An ANN-based approach for predicting global radiation in locations with no direct measurement instrumentation. Renew Energy 14(1–4):199–204. https://doi.org/10.1016/S0960-1481(98)00068-8

    Article  Google Scholar 

  16. Alresheedi A, Al-Hagery M (2020) Hybrid artificial neural networks with boruta algorithm for prediction of global solar radiation: case study in Saudi Arabia. Int J Comput Sci Netw 9(2):19–27

    Google Scholar 

  17. Cervone G, Clemente-Harding L, Alessandrini S, DelleMonache L (2017) Short-term photovoltaic power forecasting using artificial neural networks and an analog ensemble. Renew Energy 108:274–286. https://doi.org/10.1016/j.renene.2017.02.052

    Article  Google Scholar 

  18. Zeng J, Qiao W (2013) Short-term solar power prediction using a support vector machine. Renew Energy 52:118–127. https://doi.org/10.1016/j.renene.2012.10.009

    Article  Google Scholar 

  19. Almonacid F, Rus C, Hontoria L, Fuentes M, Nofuentes G (2009) Characterisation of Si-crystalline PV modules by artificial neural networks. Renew Energy 34:941–949

    Article  Google Scholar 

  20. Almonacid F, Rus C, Perez-Higueras P, Hontoria L (2011) Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks. Energy 36:375–384

    Article  Google Scholar 

  21. Almonacid F, Rus C, Pérez-Higueras P, Hontoria L (2009) Estimation of the energy of a PV generator using artificial neural network. Renew Energy 34:2743–2750

    Article  Google Scholar 

  22. Hossain M, Rahman MM, Prodhan UK, Khan MF (2013) Implementation of back-propagation neural network for isolated Bangla speech recognition. Int J Inf Sci Tech. https://doi.org/10.5121/ijist.2013.3401

    Article  Google Scholar 

  23. Rumelhart DE, McClelland JL, PDP Research Group (1986) Parallel distributed processing: explorations in the microstructure of cognition, vol. 1. MIT, Cambridge.

  24. Sivaneasan B, Yu CY, Goh KP (2017) Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia 143:727–732. https://doi.org/10.1016/j.egypro.2017.12.753

    Article  Google Scholar 

  25. Delle Monache L, Eckel F, Rife D, Nagarajan B, Searight K (2013) Probabilistic weather prediction with an analog ensemble. Mon Weather Rev 141:3498–3516. https://doi.org/10.1175/MWR-D-12-00281.1

    Article  Google Scholar 

  26. Miller D, Rivington M, Matthews KB, Buchan K, Bellocchi G (2008) Testing the spatial applicability of the Johnson–Woodward method for estimating solar radiation from sunshine duration data. Agric For Meteorol 148:466–480. https://doi.org/10.1016/j.agrformet.2007.10.008

    Article  Google Scholar 

  27. Amrouche B, Le Pivert X (2014) Artificial neural network based daily local forecasting for global solar radiation. Appl Energy 130:333–341. https://doi.org/10.1016/j.apenergy.2014.05.055

    Article  Google Scholar 

  28. Le Pivert X, Sicot L, Merten J (2009) A tool for the 24 hours forecast of photovoltaic production. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, pp 21–25

  29. Perez R, Seals R, Zelenka A (1997) Comparing satellite remote sensing and ground network measurements for the production of site/time specific irradiance data. Sol Energy 60(2):89–96. https://doi.org/10.1016/S0038-092X(96)00162-4

    Article  Google Scholar 

  30. Zelenka A, Perez R, Seals R, Renné D (1999) Effective accuracy of satellite-derived hourly irradiances. Theor Appl Climatol 62(3):199–207

    Article  Google Scholar 

  31. Linares-Rodriguez A, Ruiz-Arias JA, Pozo-Vazquez D, Tovar-Pescador J (2013) An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images. Energy 61:636–645. https://doi.org/10.1016/j.energy.2013.09.008

    Article  Google Scholar 

  32. Linares-Rodríguez A, Ruiz-Arias JA, Pozo-Vázquez D, Tovar-Pescador J (2011) Generation of synthetic daily global solar radiation data based on ERA Interim reanalysis and artificial neural networks. Energy 36:5356–5365. https://doi.org/10.1016/j.energy.2011.06.044

    Article  Google Scholar 

  33. Rigollier C, Lefèvre M, Wald L (2004) The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy 77(2):159–169. https://doi.org/10.1016/j.solener.2004.04.017

    Article  Google Scholar 

  34. Benghanem M, Mellit A, Alamri SN (2009) ANN-based modelling and estimation of daily global solar radiation data: a case study. Energy Convers Manag 50(7):1644–1655. https://doi.org/10.1016/j.enconman.2009.03.035

    Article  Google Scholar 

  35. Lu N, Qin J, Yang K, Sun J (2011) A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data. Energy 36(5):3179–3188. https://doi.org/10.1016/j.energy.2011.03.007

    Article  Google Scholar 

  36. Rosiek S, Alonso-Montesinos J, Batlles FJ (2018) Online 3-h forecasting of the power output from a BIPV system using satellite observations and ANN. Int J Electr Power Energy Syst 99:261–272. https://doi.org/10.1016/j.ijepes.2018.01.025

    Article  Google Scholar 

  37. Apostolidis GK, Hadjileontiadis JL (2017) Swarm decomposition: a novel signal analysis using swarm intelligence. Signal Process 132:40–50. https://doi.org/10.1016/j.sigpro.2016.09.004

    Article  Google Scholar 

  38. Dokur E (2020) Swarm decomposition technique based hybrid model for very short-term solar PV power generation forecast. Elektron Elektrotech 26:79–83. https://doi.org/10.5755/j01.eie.26.3.25898

    Article  Google Scholar 

  39. Mohandes M, Rehman S, Rahman SM (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 88:4024–4032. https://doi.org/10.1016/j.apenergy.2011.04.015

    Article  Google Scholar 

  40. Ranjith Kumar K, Surya Kalavathi M (2018) Artificial intelligence based forecast models for predicting solar power generation. Mater Today Proc 5(1):796–802. https://doi.org/10.1016/j.matpr.2017.11.149

    Article  Google Scholar 

  41. Olatomiwa L, Mekhilef S, Shamshirband S, Petković D (2015) Adaptive neuro-fuzzy approach for solar radiation prediction in Nigeria. Renew Sustain Energy Rev 51:1784–1791. https://doi.org/10.1016/j.rser.2015.05.068

    Article  Google Scholar 

  42. Chauvin R, Nou J, Thil S, Grieu S (2014) Intra-day DNI forecasting under clear sky conditions using ANFIS. In: IFAC proceedings volumes (IFAC-Papers Online), p 19

  43. N. Pawar & P. Nema (2020) ANFIS based forecast model for predicting PV energy generation system. Int J Sci Technol Res 9(3)

  44. Perveen G, Rizwan M, Goel N (2019) An ANFIS-based model for solar energy forecasting and its smart grid application. Eng Rep 1:12070. https://doi.org/10.1002/eng2.12070

    Article  Google Scholar 

  45. Ajit PT (2009) Solar radiant energy over India. Ministry of New and Renewable Energy and India Meteorological Department, New Delhi

    Google Scholar 

  46. Pitalúa-Díaz N, Arellano-Valmaña F, Ruz-Hernandez J, Matsumoto Y, Alazki H, Herrera-López EJ, Hinojosa J, Garcia-Juarez A, Pérez Enciso R, Velázquez-Contreras E, Juárez B, Carmen C, Bajío E, Arenal D, Jalisco Z, Mexico (2019) An ANFIS-based modeling comparison study for photovoltaic power at different geographical places in Mexico. Energies. https://doi.org/10.3390/en12142662

  47. Dawan P, Sriprapha K, Kittisontirak S, Boonraksa T, Junhuathon N, Titiroongruang W, Niemcharoen S (2020) Comparison of power output forecasting on the photovoltaic system using adaptive neuro-fuzzy inference systems and particle swarm optimization-artificial neural network model. Energies 13:351. https://doi.org/10.3390/en13020351

    Article  Google Scholar 

  48. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE international conference on neural networks, vol 4, pp 1942–1948

  49. Tripathi M, Pal Y, Yadav H (2019) PSO tuned ANFIS model for short term photovoltaic power forecasting. Int J Rec Technol Eng. 7:937–942

    Google Scholar 

  50. Salisu S, Mustafa M, Mustapha M, Mohammed O (2019) A hybrid PSO-ANFIS approach for horizontal solar radiation prediction in Nigeria. ELEKTRIKA J Electr Eng 18:23–32. https://doi.org/10.11113/elektrika.v18n2.153

    Article  Google Scholar 

  51. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1992)

  52. Halabi L, Mekhilef S, Hossain M (2018) Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl Energy. https://doi.org/10.1016/j.apenergy.2018.01.035

    Article  Google Scholar 

  53. Shamshirband S, Mohammadi K, Chen H-L, Samy GN, Petković D, Ma C (2015) Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: a case study for Iran. J Atmosph Sol Terrest Phys 134:109–117

    Article  Google Scholar 

  54. Mohammadi K, Shamshirband S, Tong CW, Alam KA, Petković D (2015) Potential of adaptive neuro-fuzzy system for prediction of daily global solar radiation by day of the year. Energy Convers Manage 93:406–413

    Article  Google Scholar 

  55. Mubiru J, Banda E (2008) Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol Energy 82:181–187

    Article  Google Scholar 

  56. Olatomiwa L, Mekhilef S, Shamshirband S, Mohammadi K, Petković D, Sudheer C (2015) A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol Energy 115:632–644

    Article  Google Scholar 

  57. Ramedani Z, Omid M, Keyhani A, Khoshnevisan B, Saboohi H (2014) A comparative study between fuzzy linear regression and support vector regression for global solar radiation prediction in Iran. Sol Energy 109:135–143

    Article  Google Scholar 

  58. Jallad J, Mekhilef S, Mokhlis H, Laghari J, Badran O (2018) Application of hybrid meta-heuristic techniques for optimal load shedding planning and operation in an islanded distribution network integrated with distributed generation. Energies 11:1134

    Article  Google Scholar 

  59. Abdullah A, Nasrudin AR, Chin G, NorAdzman N (2019) Forecasting solar power using Hybrid Firefly and Particle Swarm Optimization (HFPSO) for optimizing the parameters in a Wavelet Transform-Adaptive Neuro Fuzzy Inference System (WT-ANFIS). Appl Sci 9:3214. https://doi.org/10.3390/app9163214

    Article  Google Scholar 

  60. Zhang Q, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3(6):889–898. https://doi.org/10.1109/72.165591. (PMID: 18276486)

    Article  Google Scholar 

  61. Sharma V, Yang D, Walsh W, Reindl T (2016) Short term solar irradiance forecasting using a mixed wavelet neural network. Renew Energy 90:481–492. https://doi.org/10.1016/j.renene.2016.01.020

    Article  Google Scholar 

  62. Vapnik V et al (1996) Support vector method for function approximation, regression estimation and signal processing. In: NIPS

  63. Chen J-L, Liu H-B, Wu W, Xie D-T (2011) Estimation of monthly solar radiation from measured temperatures using support vector machines—a case study. Renew Energy 36:413–420. https://doi.org/10.1016/j.renene.2010.06.024

    Article  Google Scholar 

  64. Annandale JG, Jovanic NZ, Benade N, Allen RG (2002) Software for missing data error analysis of Penman–Monteith reference evapotranspiration. Irrig Sci 21:57–67

    Article  Google Scholar 

  65. Bristow KL, Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 31:159–166

    Article  Google Scholar 

  66. Bristow KL, Campbell GS (1984) On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric For Meteorol 31(2):159–166

    Article  Google Scholar 

  67. Chen RS, Ersi K, Yang JP, Lu SH, Zhao WZ (2004) Validation of five global radiation models with measured daily data in China. Energy Convers Manage 45:1759–1769

    Article  Google Scholar 

  68. Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrg Drain Eng ASCE 108:225–230

    Google Scholar 

  69. Belaid S, Mellit A (2016) Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate. Energy Convers Manage 118:105–118. https://doi.org/10.1016/j.enconman.2016.03.082

    Article  Google Scholar 

  70. Behrang MA, Assareh E, Ghanbarzadeh A, Noghrehabadi AR (2010) The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol Energy 84:1468–1480

    Article  Google Scholar 

  71. Benghanem M, Mellit A (2010) Radial Basis Function Network-based prediction of global solar radiation data: application for sizing of a stand-alone photovoltaic system at Al-Madinah. Saudi Arabia Energy 35:3751–3762

    Google Scholar 

  72. Moghaddamnia A, Remesan R, Kashani MH, Mohammadi M, Han D, Piri J (2009) Comparison of LLR, MLP, Elman, NNARX and ANFIS Models—with a case study in solar radiation estimation. J Atmos Solar Terr Phys 71:975–982

    Article  Google Scholar 

  73. Rahimikhoob A (2010) Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renew Energy 35:2131–2135

    Article  Google Scholar 

  74. Rehman S, Mohandes M (2008) Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 36:571–576

    Article  Google Scholar 

  75. Yacef R, Benghanem M, Mellit A (2012) Prediction of daily global solar irradiation data using Bayesian neural network: a comparative study. Renew Energy 48:146–154

    Article  Google Scholar 

  76. Chen J-L, Li G-S, Wu S (2013) Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Convers Manage 75:311–318. https://doi.org/10.1016/j.enconman.2013.06.034

    Article  Google Scholar 

  77. Moahammadi K, Shamshirband S, Petkovic D, Shudheer C (2015) A hybrid SVM-FFA method for prediction of monthly mean global solar radiation. Theor Appl Climatol 125:53–65

    Google Scholar 

  78. Jiang H, Dong Y (2016) A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2016.08.069

    Article  Google Scholar 

  79. Kaipa K, Ghose D (2009) Glowworm swarm optimisation: a new method for optimising multi-modal functions. Int J Comput Intell Stud. https://doi.org/10.1504/IJCISTUDIES.2009.515637

    Article  Google Scholar 

  80. Dhanaraj N, Venkatesh P (2014) Glowworm swarm optimization algorithm with topsis for solving multiple objective environmental economic dispatch problem. Appl Soft Comput 23:375–386

    Article  Google Scholar 

  81. Mohammadi K, Shamshirband S, Anisi H, Alam K, Petkovic D (2015) Support vector regression based prediction of global solar radiation on a horizontal surface. Energy Conver Manag 91:433–441. https://doi.org/10.1016/j.enconman.2014.12.015

    Article  Google Scholar 

  82. Angstrom A (1924) Solar and terrestrial radiation. Q J R Meterol Soc 50:121–125

    Article  Google Scholar 

  83. Prescott JA (1940) Evaporation from a water surface in relation to solar radiation. Trans R Soc Sci Aust 64:114–25

    Google Scholar 

  84. Ogelman H, Ecevit A, Tasdemiroglu E (1984) A new method for estimating solar radiation from bright sunshine data. Sol Energy 33:619–625

    Article  Google Scholar 

  85. Bahel V, Bakhsh H, Srinivasan R (1987) A correlation for estimation of global solar radiation. Energy 12:131–135

    Article  Google Scholar 

  86. Elagib N, Mansell MG (2000) New approaches for estimating global solar radiation across Sudan. Energy Convers Manage 41:419–434

    Article  Google Scholar 

  87. Ramedani Z, Omid M, Keyhani A, Band S, Khoshnevisan B (2014) Potential of radial basis function based support vector regression for global solar radiation prediction. Renew Sustain Energy Rev 39:1005–1011. https://doi.org/10.1016/j.rser.2014.07.108

    Article  Google Scholar 

  88. Zheng Z-W, Chen Y-Y, Zhou X-W, Huo M-M, Zhao B, Guo M-Y (2013) Short-term wind power forecasting using empirical mode decomposition and RBFNN. Int J Smart Grid Clean Energy 2:192–199. https://doi.org/10.12720/sgce.2.2.192-199

    Article  Google Scholar 

  89. Shang C, Wei P (2018) Enhanced support vector regression based forecast engine to predict solar power output. Renew Energy. https://doi.org/10.1016/j.renene.2018.04.067

    Article  Google Scholar 

  90. Antonanzas F, Urraca R, Antonanzas J, Fernandez-Ceniceros J, Ascacibar FJ (2015) Generation of daily global solar irradiation with support vector machines for regression. Energy Convers Manage 96:277–286. https://doi.org/10.1016/j.enconman.2015.02.086

    Article  Google Scholar 

  91. Antonanzas-Torres F, Sanz-Garcia A, Martinez-de-Pison-Ascacibar FJ, Perpiñan-Lamiguiero O (2013) Evaluation and improvement of empirical models of global solar irradiation: case study northern Spain. Renew Energy 60:604–614

    Article  Google Scholar 

  92. Ibrahim I, Khatib T (2017) A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm. Energy Convers Manage 138:413–425. https://doi.org/10.1016/j.enconman.2017.02.006

    Article  Google Scholar 

  93. Friedman J (2000) Greedy function approximation: a gradient boosting machine. Ann Stat. https://doi.org/10.1214/aos/1013203451

    Article  MATH  Google Scholar 

  94. Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J Anim Ecol 80:528–538

    Article  Google Scholar 

  95. Leathwick J, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281

    Article  Google Scholar 

  96. Carslaw DC, Taylor PJ (2009) Analysis of air pollution data at a mixed source location using boosted regression trees. Atmos Environ 43:3563–3570

    Article  Google Scholar 

  97. Johnstone J, Hollingsworth T, Chapin F, Mack M (2010) Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob Chang Biol 16:1281–1295

    Article  Google Scholar 

  98. Lou S, Li D, Lok C, Chan W (2016) Prediction of diffuse solar irradiance using ML and multivariable regression. Appl Energy 181:367–374. https://doi.org/10.1016/j.apenergy.2016.08.093

    Article  Google Scholar 

  99. Andreas A, Stoffel T (1981) NREL solar radiation research laboratory (SRRL): baseline measurement system (BMS); Golden, CO (Data). NREL. 1981. Report No. DA-5500-56488. https://doi.org/10.5439/1052221

  100. Maxwell EL (1987) A quasi-physical model for converting hourly global horizontal to direct normal insolation. Technical Report, Solar Energy Research Institute, Golden. Report No. SERI/TR-215–3087l

  101. Perez R, Ineichen P, Maxwell EL (1992) Dynamic global-to-direct irradiance conversion model. ASHRAE Trans 98:354–369

    Google Scholar 

  102. Ridley B, Boland J, Lauret P (2010) Modelling of diffuse solar fraction with multiple predictors. Renew Energy 35:478–483

    Article  Google Scholar 

  103. Pedro H, Coimbra C (2015) Nearest-neighbor methodology for prediction of intra-hour global horizontal and direct normal irradiances. Renew Energy 80:770–782. https://doi.org/10.1016/j.renene.2015.02.061

    Article  Google Scholar 

  104. Lin K-P, Pai P-F (2015) Solar power output forecasting using evolutionary seasonal decomposition least-square support vector regression. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.08.099

    Article  Google Scholar 

  105. Wang Z, Koprinska I (2017) Solar power prediction with data source weighted nearest neighbors. In: 2017 International joint conference on neural networks (IJCNN), pp 1411–1418. https://doi.org/10.1109/IJCNN.2017.7966018.

  106. Gupta R, Yadav AK, Jha S, Pathak PK (2022) Time series forecasting of solar power generation using Facebook Prophet and XG Boost. In: 2022 IEEE Delhi section conference (DELCON), pp 1–5. https://doi.org/10.1109/DELCON54057.2022.9752916

  107. Thaker J, Höller R (2022) A comparative study of time series forecasting of solar energy based on irradiance classification. Energies 15:2837. https://doi.org/10.3390/en15082837

    Article  Google Scholar 

  108. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780

    Article  Google Scholar 

  109. Husein M, Chung I-Y (2019) Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a DL approach. Energies 12:1856. https://doi.org/10.3390/en12101856

    Article  Google Scholar 

  110. Chandola D, Gupta H, Tikkiwal V, Bohra M (2020) Multi-step ahead forecasting of global solar radiation for arid zones using DL. Procedia Comput Sci 167:626–635. https://doi.org/10.1016/j.procs.2020.03.329

    Article  Google Scholar 

  111. National Solar Radiation Database (2018) https://nsrdb.nrel.gov/. Accessed 20 Apr 2018

  112. Halpern-Wight N, Konstantinou M, Charalambides A, Reinders A (2020) Training and testing of a single-layer LSTM network for near-future solar forecasting. Appl Sci 10:5873. https://doi.org/10.3390/app10175873

    Article  Google Scholar 

  113. Lee D, Kim K (2019) Recurrent neural network-based hourly prediction of photovoltaic power output using meteorological information. Energies 12:215. https://doi.org/10.3390/en12020215

    Article  Google Scholar 

  114. Sun Y, Venugopal V, Brandt AR (2019) Short-term solar power forecast with DL: Exploring optimal input and output configuration. Sol Energy 188:730–741. https://doi.org/10.1016/j.solener.2019.06.041

    Article  Google Scholar 

  115. Wang J, Guo L, Zhang C, Song L, Duan J, Duan L (2020) Thermal power forecasting of solar power tower system by combining mechanism modeling and DL method. Energy 208:118403. https://doi.org/10.1016/j.energy.2020.118403

    Article  Google Scholar 

  116. Rajagukguk RA, Kamil R, Lee H-J (2021) A DL model to forecast solar irradiance using a sky camera. Appl Sci 11(11):5049. https://doi.org/10.3390/app11115049

    Article  Google Scholar 

  117. Malakar S, Goswami S, Ganguli B et al (2021) Designing a long short-term network for short-term forecasting of global horizontal irradiance. SN Appl Sci 3:477. https://doi.org/10.1007/s42452-021-04421-x

    Article  Google Scholar 

  118. Kumar A, Gomathinayagam S, Giridhar G, Mitra I, Vashistha R, Meyer R, Schwandt M, Chhatbar K (2014) Field experiences with the operation of solar radiation resource assessment stations in india. Energy Procedia 49:2351–2361. https://doi.org/10.1016/j.egypro.2014.03.249

    Article  Google Scholar 

  119. Abdel-Nasser M, Mahmoud K (2019) Accurate photovoltaic power forecasting models using deep. Neural Comput Appl 31:2727. https://doi.org/10.1007/s00521-017-3225-z

    Article  Google Scholar 

  120. Wang Y, Li H (2018) A novel intelligent modeling framework integrating convolutional neural network with an adaptive time-series window and its application to industrial process operational optimization. Chemom Intell Lab Syst 179:64–72. https://doi.org/10.1016/j.chemolab.2018.06.008

    Article  Google Scholar 

  121. Sun Y et al (2018) Convolutional neural network for short-term solar panel output prediction. In: 2018 IEEE 7th world conference on photovoltaic energy conversion (WCPEC) (A joint conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pp 2357–2361

  122. Jiang C, Mao Y, Chai Y, Yu M (2020) Day-ahead renewable scenario forecasts based on generative adversarial networks. Int J Energy Res 45(5):7572–7587

    Article  Google Scholar 

  123. Draxl C, Clifton A, Hodge B-M, McCaa J (2015) The Wind Integration National Dataset (WIND) toolkit. Appl Energy 151:355–366. https://doi.org/10.1016/j.apenergy.2015.03.121

    Article  Google Scholar 

  124. Sarmas E, Dimitropoulos N, Marinakis V et al (2022) Transfer learning strategies for solar power forecasting under data scarcity. Sci Rep 12:14643. https://doi.org/10.1038/s41598-022-18516-x

    Article  Google Scholar 

  125. Zhou S, Zhou L, Mao M, Xi X (2020) Transfer learning for photovoltaic power forecasting with long short-term memory neural network. In: 2020 IEEE international conference on big data and smart computing (BigComp), pp 125–132. https://doi.org/10.1109/BigComp48618.2020.00-87

  126. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al (2014) Generative adversarial networks. In: Advances in neural information processing systems. https://doi.org/10.1001/jamainternmed.2016.8245

  127. Yoo H-C, Lee K-H, Park S-H (2008) Analysis of data and calculation of global solar radiation based on cloud data for major cities in Korea. J Korean Sol Energy Soc 28:17–24

    Google Scholar 

  128. Ullah FUM, Ullah A, Khan N, Lee MY, Rho S, Baik SW (2022) Deep learning-assisted short-term power load forecasting using deep convolutional LSTM and stacked GRU. Complexity. https://doi.org/10.1155/2022/2993184

    Article  Google Scholar 

  129. Luo X, Zhang D, Zhu X (2021) DL based forecasting of photovoltaic power generation by incorporating domain knowledge. Energy 225:120240. https://doi.org/10.1016/j.energy.2021.120240

    Article  Google Scholar 

  130. Jebli I, Belouadha F-Z, Kabbaj MI, Tilioua A (2021) DL based models for solar energy prediction. Adv Sci Technol Eng Syst J 6:349–355. https://doi.org/10.25046/aj060140

    Article  Google Scholar 

  131. Hussain A, Khan ZA, Hussain T, Ullah FUM, Rho S, Baik SW (2022) A hybrid deep learning-based network for photovoltaic power forecasting. Complexity. https://doi.org/10.1155/2022/7040601

    Article  Google Scholar 

  132. Sharma V, González-Ordiano J, Mikut R, Cali U (2021) Probabilistic solar power forecasting: long short-term memory network vs simpler approaches. Arvix Preprint

  133. Konstantinou M, Peratikou S, Charalambides AG (2021) Solar photovoltaic forecasting of power output using LSTM networks. Atmosphere 12(1):124. https://doi.org/10.3390/atmos12010124

    Article  Google Scholar 

  134. Cabrera W, Benhaddou D, Ordonez C (2016) Solar power prediction for smart community microgrid. In: 2016 IEEE international conference on smart computing (SMARTCOMP), pp 1–6. https://doi.org/10.1109/SMARTCOMP.2016.7501718.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rajasundrapandiyanleebanon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasundrapandiyanleebanon, T., Kumaresan, K., Murugan, S. et al. Solar Energy Forecasting Using Machine Learning and Deep Learning Techniques. Arch Computat Methods Eng 30, 3059–3079 (2023). https://doi.org/10.1007/s11831-023-09893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09893-1

Keywords

Navigation