Skip to main content

Advertisement

Log in

Advancement in Machine Learning: A Strategic Lookout from Cancer Identification to Treatment

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Machine learning is an established data interpretation tool for the development of processing, extracting and extrapolating evocative results from complex data sets. Data-based and computer-aided cancer research in patients expands at a rapid pace and presents a growing landscape of potential for Machine Learning methodologies, driven by the growing need for personalization of medical procedures. Previous research on artificial neural networks displays remarkable improvements in data mining tools and superior computational performance in prediction and diagnostics of cancer. For data mining, the article initially reviews machine-learning tools available for detection, susceptibility, reoccurrence and prediction of cancer prognosis. This article summarizes major challenges and problem-solving methods with examples of tools and brief description of algorithms used to improve the efficiency of cancer treatment and the development of personalized medicine and treatment for diverse types of cancer-based on genomic and protein data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no databases were generated or analyzed during the current study.

Abbreviations

ML:

Machine learning

ANN:

Artificial Neural Networks

DTs:

Decision Trees

CRT:

Cathode-ray tube

CNN:

Convolutional Neural Network

miRNA:

MicroRNAs

RT:

Radiotherapy

SVM:

Support Vector Machine

BRAF:

v-raf murine sarcoma viral oncogene homolog B1

TP53:

tumor protein p53

CREBBP:

Cyclic adenosine monophosphate Response Element Binding protein

MYC:

MYC Proto-Oncogene, BHLH Transcription Factor

FlLpF:

fast focal Laplacian filtering

HSV:

Herpes Simplex

TCGA:

The Cancer Genome Atlas

ICGA:

Indocyanine green angiography

CFEs:

cancer functional event

NLCLCs:

Non-small cell lung cancer

DEMETER:

Digital Transformation of the European Agrifood sector

PPWD1:

Peptidylprolyl Isomerase Domain And WD Repeat Containing 1

NXF1:

Nuclear export factor 1

LRR:

leucine-rich repeat

PSHG:

polarization-dependent second-harmonic generation

References

  1. Simes RJ (1985) Treatment selection for cancer patients: application of statistical decision theory to the treatment of advanced ovarian cancer. J Chronic Dis 38:171–186. https://doi.org/10.1016/0021-9681(85)90090-6

    Article  Google Scholar 

  2. Maclin PS, Dempsey J, Brooks J, Rand J (1991) Using neural networks to diagnose cancer. J Med Syst 1991 151 15:11–19. https://doi.org/10.1007/BF00993877

    Article  Google Scholar 

  3. Govardhane S, Gandhi S, Shende P (2022) Neural-ensemble-based detection: a modern way to diagnose lung cancer. Artif Intell Cancer Diagnosis Progn Vol 1 2-1-2–17. https://doi.org/10.1088/978-0-7503-3595-9CH2

    Article  Google Scholar 

  4. Petricoin EF, Liotta LA (2004) SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr Opin Biotechnol 15:24–30. https://doi.org/10.1016/J.COPBIO.2004.01.005

    Article  Google Scholar 

  5. Bocchi L, Coppini G, Nori J, Valli G (2004) Detection of single and clustered microcalcifications in mammograms using fractals models and neural networks. Med Eng Phys 26:303–312. https://doi.org/10.1016/J.MEDENGPHY.2003.11.009

    Article  Google Scholar 

  6. Zhou X, Liu KY, Wong STC (2004) Cancer classification and prediction using logistic regression with bayesian gene selection. J Biomed Inform 37:249–259. https://doi.org/10.1016/J.JBI.2004.07.009

    Article  Google Scholar 

  7. Dettling M (2004) BagBoosting for tumor classification with gene expression data. Bioinformatics 20:3583–3593. https://doi.org/10.1093/BIOINFORMATICS/BTH447

    Article  Google Scholar 

  8. Wang J, Zhang B, Yu J et al (2005) Application of serum protein fingerprinting coupled with artificial neural network model in diagnosis of hepatocellular carcinoma. Chin Med J (Engl) 118:1278–1284

    Google Scholar 

  9. Borrelli P, Ly J, Kaboteh R et al (2021) AI-based detection of lung lesions in [18F]FDG PET-CT from lung cancer patients. EJNMMI Phys 8:32. https://doi.org/10.1186/s40658-021-00376-5

    Article  Google Scholar 

  10. Polley M-YC, Freidlin B, Korn EL et al (2013) Statistical and practical considerations for clinical evaluation of predictive biomarkers. JNCI J Natl Cancer Inst 105:1677–1683. https://doi.org/10.1093/jnci/djt282

    Article  Google Scholar 

  11. Fortunato O, Boeri M, Verri C et al (2014) Assessment of Circulating microRNAs in Plasma of Lung Cancer Patients. Mol 2014, Vol 19, Pages 3038–3054 19:3038–3054. https://doi.org/10.3390/MOLECULES19033038

  12. Zen K, Zhang C-Y (2012) Circulating MicroRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32:326–348. https://doi.org/10.1002/med.20215

    Article  Google Scholar 

  13. Madhavan D, Cuk K, Burwinkel B, Yang R (2013) Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet 4:116

    Article  Google Scholar 

  14. Heneghan HM, Miller N, Kerin MJ (2010) MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol 10:543–550. https://doi.org/10.1016/j.coph.2010.05.010

    Article  Google Scholar 

  15. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492. https://doi.org/10.1016/S0140-6736(05)17866-0

    Article  Google Scholar 

  16. Serge K (2010) Why most gene expression signatures of Tumors have not been useful in the clinic. Sci Transl Med 2. https://doi.org/10.1126/scitranslmed.3000313. 14ps2-14ps2

  17. Jin S, Qin D, Liang BS et al (2022) Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables. Int J Med Inform 161:104733. https://doi.org/10.1016/J.IJMEDINF.2022.104733

    Article  Google Scholar 

  18. El Massari H, Gherabi N, Mhammedi S et al (2022) An ontological model based on Machine Learning for Predicting breast Cancer. Int J Adv Comput Sci Appl 13:108–115. https://doi.org/10.14569/IJACSA.2022.0130715

    Article  Google Scholar 

  19. Pedregosa F, Gael Varoquaux, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  20. Breiman L (2001) Random Forests. Mach Learn 2001 451 45:5–32. https://doi.org/10.1023/A:1010933404324

  21. Toth R, Schiffmann H, Hube-Magg C et al (2019) Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 11:148. https://doi.org/10.1186/s13148-019-0736-8

    Article  Google Scholar 

  22. Bertsimas D, Dunn J (2017) Optimal classification trees. Mach Learn 2017 1067 106:1039–1082. https://doi.org/10.1007/S10994-017-5633-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Bertsimas D, Pauphilet J, Stevens J, Tandon M (2021) Predicting Inpatient Flow at a Major Hospital Using Interpretable Analytics. https://doi.org/10.1287/MSOM.2021.0971

  24. Ponnuraja C, Lakshmanan BC, Srinivasan V, Prasanth BK (2017) Decision tree classification and model evaluation for breast Cancer survivability: A Data Mining Approach. Biomed Pharmacol J 10:281–289. https://doi.org/10.13005/BPJ/1107

    Article  Google Scholar 

  25. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/J.NEUNET.2014.09.003

    Article  Google Scholar 

  26. Dabeer S, Khan MM, Islam S (2019) Cancer diagnosis in histopathological image: CNN based approach. Inf Med Unlocked 16:100231. https://doi.org/10.1016/J.IMU.2019.100231

    Article  Google Scholar 

  27. Rifaioglu AS, Atas H, Martin MJ et al (2019) Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform 20:1878–1912. https://doi.org/10.1093/bib/bby061

    Article  Google Scholar 

  28. Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: General overview. Korean J Radiol 18:570–584. https://doi.org/10.3348/kjr.2017.18.4.570

    Article  Google Scholar 

  29. Patel L, Shukla T, Huang X, Ussery DW (2020) Machine Learning Methods in Drug Discovery

  30. Kourou K, Exarchos TP, Exarchos KP et al (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005

    Article  Google Scholar 

  31. Radev DR, Jing H, Styś M, Tam D (2004) Centroid-based summarization of multiple documents. Inf Process Manag 40:919–938. https://doi.org/10.1016/J.IPM.2003.10.006

    Article  MATH  Google Scholar 

  32. Yousef M, Showe L, Showe M (2009) A study of microRNAs in silico and in vivo: bioinformatics approaches to microRNA discovery and target identification. FEBS J 276:2150–2156. https://doi.org/10.1111/j.1742-4658.2009.06933.x

    Article  Google Scholar 

  33. Bundela S, Sharma A, Bisen PS (2015) Potential compounds for oral Cancer treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLoS ONE 10:e0141719. https://doi.org/10.1371/JOURNAL.PONE.0141719

    Article  Google Scholar 

  34. Volkamer A, Kuhn D, Grombacher T et al (2012) Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 52:360–372. https://doi.org/10.1021/CI200454V

    Article  Google Scholar 

  35. Wang Q, Feng YH, Huang JC et al (2017) A novel framework for the identification of drug target proteins: combining stacked auto-encoders with a biased support vector machine. PLoS ONE 12:e0176486. https://doi.org/10.1371/JOURNAL.PONE.0176486

    Article  Google Scholar 

  36. Syed K, Sleeman WC, Nalluri JJ et al (2020) Artificial intelligence methods in computer-aided diagnostic tools and decision support analytics for clinical informatics. Artif Intell Precis Heal 31–59. https://doi.org/10.1016/B978-0-12-817133-2.00002-1

  37. Salama WM, Aly MH (2021) Prostate cancer detection based on deep convolutional neural networks and support vector machines: a novel concern level analysis. Multimed Tools Appl 80:24995–25007

    Article  Google Scholar 

  38. Li L, Bagheri S, Goote H et al (2013) Risk Adjustment of Patient Expenditures: A Big Data Analytics Approach. 12–14

  39. Lind AP, Anderson PC (2019) Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0219774

    Article  Google Scholar 

  40. Sun G, Li S, Cao Y, Lang F (2017) Cervical cancer diagnosis based on random forest. Int J Performability Eng 13:446–457. https://doi.org/10.23940/ijpe.17.04.p12.446457

    Article  Google Scholar 

  41. Kiwiel KC (2001) Convergence and efficiency of subgradient methods for quasiconvex minimization. Math Program 90:1–25. https://doi.org/10.1007/PL00011414

    Article  MathSciNet  MATH  Google Scholar 

  42. Kubat M (1999) Neural networks: a comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Knowl Eng Rev 13:409–412. DOI: 10.1017/S0269888998214044

  43. Yan R, Ren F, Wang Z et al (2020) Breast cancer histopathological image classification using a hybrid deep neural network. Methods 173:52–60. https://doi.org/10.1016/j.ymeth.2019.06.014

    Article  Google Scholar 

  44. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243. https://doi.org/10.1113/jphysiol.1968.sp008455

    Article  Google Scholar 

  45. Saba T, Khan MA, Rehman A, Marie-Sainte SL (2019) Region extraction and classification of skin Cancer: a heterogeneous framework of deep CNN features Fusion and Reduction. J Med Syst 43. https://doi.org/10.1007/s10916-019-1413-3

  46. He K, Zhang X, Ren S, Sun J (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. 1026–1034

  47. Sarkar SK (2017) Identifying patients at risk of breast Cancer through decision trees. Int J Adv Res Comput Sci 8:88–91. https://doi.org/10.26483/ijarcs.v8i8.4602

    Article  Google Scholar 

  48. Cruz JA, Wishart DS (2017) Applications of machine learning in Cancer Prediction and Prognosis: https://doi.org/101177/117693510600200030 2. 59–77. https://doi.org/10.1177/117693510600200030

  49. Sharma S, Deshpande S (2021) Breast Cancer classification using machine learning algorithms. Lect Notes Networks Syst 141:571–578. https://doi.org/10.1007/978-981-15-7106-0_56

    Article  Google Scholar 

  50. Jeon J, Nim S, Teyra J et al (2014) A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Med 2014 67 6:1–18. https://doi.org/10.1186/S13073-014-0057-7

    Article  Google Scholar 

  51. Iorio F, Knijnenburg TA, Vis DJ et al (2016) A Landscape of Pharmacogenomic interactions in Cancer. Cell 166:740–754. https://doi.org/10.1016/j.cell.2016.06.017

    Article  Google Scholar 

  52. Tsherniak A, Vazquez F, Montgomery PG et al (2017) Defining a Cancer Dependency Map. Cell 170:564–576. .e16

    Article  Google Scholar 

  53. McMillan EA, Ryu MJ, Diep CH et al (2018) Chemistry-First Approach for nomination of Personalized Treatment in Lung Cancer. Cell 173:864–878e29. https://doi.org/10.1016/j.cell.2018.03.028

    Article  Google Scholar 

  54. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res 39:D1035–D1041. https://doi.org/10.1093/NAR/GKQ1126

    Article  Google Scholar 

  55. Punta M, Coggill PC, Eberhardt RY et al (2012) The pfam protein families database. Nucleic Acids Res 40. https://doi.org/10.1093/NAR/GKR1065

  56. Gupta S, Chaudhary K, Kumar R et al (2016) Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: a step towards personalized medicine. Sci Rep 6:1–11. https://doi.org/10.1038/srep23857

    Article  Google Scholar 

  57. Lan Y, Chen L, Wang W (2020) Machine learning identifies the miR-196b and miR- 34c-5p as the Chemotherapy response biomarkers of lung adenocarcinoma.1–17

  58. Mirsanaye K, Uribe Castaño L, Kamaliddin Y et al (2022) Machine learning-enabled cancer diagnostics with widefield polarimetric second-harmonic generation microscopy. Sci Rep 2022 121 12:1–14. https://doi.org/10.1038/s41598-022-13623-1

    Article  Google Scholar 

  59. Chu CS, Lee NP, Adeoye J et al (2020) Machine learning and treatment outcome prediction for oral cancer. J Oral Pathol Med 49:977–985. https://doi.org/10.1111/jop.13089

    Article  Google Scholar 

  60. Bur AM, Holcomb A, Goodwin S et al (2019) Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncol 92:20–25. https://doi.org/10.1016/j.oraloncology.2019.03.011

    Article  Google Scholar 

  61. Xu X, Zhang Y, Zou L et al (2012) A gene signature for breast Cancer prognosis using support Vector Machine.928–931

  62. Ferroni P, Zanzotto FM, Riondino S et al (2019) Breast cancer prognosis using a machine learning approach. Cancers (Basel) 11:1–9. https://doi.org/10.3390/cancers11030328

    Article  Google Scholar 

  63. Asri H, Mousannif H, Al Moatassime H, Noel T (2016) Using machine learning algorithms for breast Cancer risk prediction and diagnosis. Procedia Comput Sci 83:1064–1069. https://doi.org/10.1016/j.procs.2016.04.224

    Article  Google Scholar 

  64. Howard FM, Kochanny S, Koshy M et al (2020) Machine learning-guided adjuvant treatment of Head and Neck Cancer. JAMA Netw open 3. https://doi.org/10.1001/JAMANETWORKOPEN.2020.25881

  65. Tahmassebi A, Wengert GJ, Helbich TH et al (2018) Impact of machine learning with Multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast Cancer patients. 00:1–8. https://doi.org/10.1097/RLI.0000000000000518

  66. Boeri C, Chiappa C, Galli F et al (2020) Machine learning techniques in breast cancer prognosis prediction: a primary evaluation. 1–10. https://doi.org/10.1002/cam4.2811

  67. Sammut SJ, Crispin-Ortuzar M, Chin SF et al (2021) Multi-omic machine learning predictor of breast cancer therapy response. Nat 2021 6017894 601:623–629. https://doi.org/10.1038/s41586-021-04278-5

    Article  Google Scholar 

  68. Alabi RO, Elmusrati M, Sawazaki-Calone I et al (2019) Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a web-based prognostic tool. Virchows Arch 475:489–497. https://doi.org/10.1007/s00428-019-02642-5

    Article  Google Scholar 

  69. Tseng C-J, Lu C-J, Chang C-C et al (2014) Application of machine learning to predict the recurrence-proneness for cervical cancer Gin-Den Chen. Neural Comput Applic 24:1311–1316. https://doi.org/10.1007/s00521-013-1359-1

    Article  Google Scholar 

  70. Kim W, Kim KS, Lee JE et al (2012) Breast Cancer Development of novel breast Cancer Recurrence Prediction Model using support Vector Machine. 15:230–238

  71. Munya A, Arasi SB, BREAST CANCER DIAGNOSIS AND RECURRENCE PREDICT ION USING MACHINE LEARNING TECHNIQUES (2013) Heal Med Inf. https://doi.org/10.4172/2157-7420.1000124

    Article  Google Scholar 

  72. Rahman SA, Walker RC, Lloyd MA et al (2020) Machine learning to predict early recurrence after oesophageal cancer surgery. Br J Surg 107:1042–1052. https://doi.org/10.1002/BJS.11461

    Article  Google Scholar 

  73. Lu M, Fan Z, Xu B et al (2020) Using machine learning to predict ovarian cancer. Int J Med Inform. https://doi.org/10.1016/J.IJMEDINF.2020.104195. 141:

    Article  Google Scholar 

  74. Bhambhvani HP, Zamora SB A, et al (2020) Development of robust artificial neural networks for prediction of 5-year survival in bladder cancer. Urol Oncol Semin Orig Investig 000. https://doi.org/10.1016/j.urolonc.2020.05.009

  75. Wang D, Khosla A, Gargeya R et al (2016) Deep Learning for Identifying Metastatic Breast Cancer. 1–6

  76. Wang D, Rubadue C, Suster D, Beck A (2017) Deep Learning Assessment of Tumor proliferation in breast Cancer histological images.600–603

  77. Hyun SH, Ahn MS, Koh YW, Lee SJ (2019) A machine-learning Approach using PET-Based Radiomics to predict the histological subtypes of Lung Cancer. Clin Nucl Med 44:956–960. https://doi.org/10.1097/RLU.0000000000002810

    Article  Google Scholar 

  78. Jain MS, Massoud TF (2020) Histopathological images using multiscale deep learning. Nat Mach Intell. https://doi.org/10.1038/s42256-020-0190-5. 2:

    Article  Google Scholar 

  79. Whitney J, Corredor G, Janowczyk A et al (2018) Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER + breast cancer. BMC Cancer 18:1–15. https://doi.org/10.1186/s12885-018-4448-9

    Article  Google Scholar 

  80. Jiang W, Li M, Tan J et al (2021) A Nomogram based on a collagen feature support Vector Machine for Predicting the treatment response to Neoadjuvant Chemoradiotherapy in rectal Cancer patients. Ann Surg Oncol 28:6408–6421. https://doi.org/10.1245/S10434-021-10218-4

    Article  Google Scholar 

  81. Eresen A, Li Y, Yang J et al (2020) Preoperative assessment of lymph node metastasis in Colon cancer patients using machine learning: a pilot study. Cancer Imaging 20. https://doi.org/10.1186/S40644-020-00308-Z

  82. Huang CH, Zeng C, Wang YC et al (2018) A study of diagnostic accuracy using a chemical sensor array and a machine learning technique to detect lung cancer. Sens (Switzerland) 18. https://doi.org/10.3390/s18092845

  83. Yang HY, Wang YC, Peng HY, Huang CH (2021) Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci Rep 11. https://doi.org/10.1038/S41598-020-80570-0

  84. Günakan E, Atan S, Haberal AN et al (2019) A novel prediction method for lymph node involvement in endometrial cancer: Machi learning. Int J Gynecol Cancer 29:320–324. https://doi.org/10.1136/ijgc-2018-000033

    Article  Google Scholar 

  85. Yuan Q, Cai T, Hong C et al (2021) Performance of a machine learning Algorithm using Electronic Health Record Data to identify and Estimate Survival in a longitudinal cohort of patients with Lung Cancer. JAMA Netw Open 4:e2114723–e2114723. https://doi.org/10.1001/JAMANETWORKOPEN.2021.14723

    Article  Google Scholar 

  86. Landrum MJ, Lee JM, Benson M et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  Google Scholar 

  87. Chakravarty D, Gao J, Phillips S et al (2017) OncoKB: a Precision Oncology Knowledge Base. JCO Precis Oncol 1–16. https://doi.org/10.1200/PO.17.00011

  88. Muiños F, Martínez-Jiménez F, Pich O et al (2021) In silico saturation mutagenesis of cancer genes. Nature 596:428–432. https://doi.org/10.1038/s41586-021-03771-1

    Article  Google Scholar 

  89. Menden MP, Iorio F, Garnett M et al (2013) Machine learning prediction of Cancer Cell sensitivity to drugs based on genomic and Chemical Properties. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0061318

  90. Shukla A, Singh TR (2018) Network-based approach to understand dynamic behaviour of wnt signaling pathway regulatory elements in colorectal cancer. Netw Model Anal Heal Informatics Bioinforma 7:14. https://doi.org/10.1007/s13721-018-0175-z

    Article  Google Scholar 

  91. Lee M, Chen GT, Puttock E et al (2017) Mathematical modeling links wnt signaling to emergent patterns of metabolism in colon cancer. Mol Syst Biol 13:912. https://doi.org/10.15252/msb.20167386

    Article  Google Scholar 

  92. Kofahl B, Wolf J (2010) Mathematical modelling of Wnt/β-catenin signalling. Biochem Soc Trans 38:1281–1285. https://doi.org/10.1042/BST0381281

    Article  Google Scholar 

  93. Kogan Y, Halevi-Tobias KE, Hochman G et al (2012) A new validated mathematical model of the wnt signalling pathway predicts effective combinational therapy by sFRP and dkk. Biochem J 444:115–125. https://doi.org/10.1042/BJ20111887

    Article  Google Scholar 

  94. Nwaokorie A, Fey D (2021) Personalised medicine for colorectal cancer using mechanism-based machine learning models. Int J Mol Sci 22. https://doi.org/10.3390/ijms22189970

  95. Panahi MH, Mohammad K, Bidhendi Yarandi R, Ramezani Tehrani F (2021) Dealing with Sparse Data Bias in Medical Sciences: Comprehensive Review of methods and applications. Acta Med Iran. https://doi.org/10.18502/acta.v58i11.5147

    Article  Google Scholar 

  96. Mikolov T, Corrado G, Chen K, Dean J (2013) Efficient estimation of Word Representations in Vector Space.Comput Sci1–12

  97. Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Stand-alone Artificial intelligence for breast Cancer detection in Mammography: comparison with 101 radiologists. J Natl Cancer Inst 111:916–922. https://doi.org/10.1093/JNCI/DJY222

    Article  Google Scholar 

  98. Dhungel N, Carneiro G, Bradley AP (2017) A deep learning approach for the analysis of masses in mammograms with minimal user intervention. Med Image Anal 37:114–128. https://doi.org/10.1016/J.MEDIA.2017.01.009

    Article  Google Scholar 

  99. Sommer R, Paxson V (2010) Outside the closed world: on using machine learning for network intrusion detection. Proc - IEEE Symp Secur Priv 305–316. https://doi.org/10.1109/SP.2010.25

  100. Breiman L (2001) Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci 16:199–231. https://doi.org/10.1214/ss/1009213726

    Article  MATH  Google Scholar 

  101. Sturm I, Lapuschkin S, Samek W, Müller K-R (2016) Interpretable deep neural networks for single-trial EEG classification. J Neurosci Methods 274:141–145. https://doi.org/10.1016/j.jneumeth.2016.10.008

    Article  Google Scholar 

  102. Lavin A, Renard G (2020)Technology Readiness Levels for AI & ML

  103. Gao F, Abd-Almageed W, Hefeeda M (2012) Distributed approximate spectral clustering for large-scale datasets. HPDC ’12 - Proc 21st ACM Symp High-Performance parallel distrib comput. 223–234. https://doi.org/10.1145/2287076.2287111

  104. You Y, Fu H, Song SL et al (2015) Scaling support Vector Machines on modern HPC platforms. J Parallel Distrib Comput 76:16–31. https://doi.org/10.1016/J.JPDC.2014.09.005

    Article  Google Scholar 

  105. Cavallaro G, Riedel M, Richerzhagen M et al (2015) On understanding Big Data Impacts in remotely sensed image classification using support Vector Machine Methods. IEEE J Sel Top Appl Earth Obs Remote Sens 8:4634–4646. https://doi.org/10.1109/JSTARS.2015.2458855

    Article  Google Scholar 

  106. Zhu J, Chen J, Hu W, Zhang B (2014) Big learning with bayesian methods. Natl Sci Rev 4:627–651. https://doi.org/10.1093/nsr/nwx044

    Article  Google Scholar 

  107. Kraska T, Talwalkar A, Duchi J et al (2013) MLbase: a distributed machine-learning system. CIDR 2013–6th Bienn Conf Innov Data Syst Res

  108. Rawson TM, Ahmad R, Toumazou C et al (2019) Artificial intelligence can improve decision-making in infection management. Nat Hum Behav 2019 36 3:543–545. https://doi.org/10.1038/s41562-019-0583-9

    Article  Google Scholar 

  109. Schaduangrat N, Lampa S, Simeon S et al (2020) Towards reproducible computational drug discovery. J Cheminformatics 2020 121 12:1–30. https://doi.org/10.1186/S13321-020-0408-X

    Article  Google Scholar 

  110. Ngiam KY, Khor IW (2019) Big data and machine learning algorithms for health-care delivery. Lancet Oncol 20:e262–e273. https://doi.org/10.1016/S1470-2045(19)30149-4

    Article  Google Scholar 

Download references

Acknowledgements

NA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Shende.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, M., Shende, P. Advancement in Machine Learning: A Strategic Lookout from Cancer Identification to Treatment. Arch Computat Methods Eng 30, 2777–2792 (2023). https://doi.org/10.1007/s11831-023-09886-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09886-0

Keywords

Navigation