Skip to main content
Log in

State-of-the-Art Load Balancing Algorithms for Mist-Fog-Cloud Assisted Paradigm: A Review and Future Directions

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The rapid growth of IoT devices leads to increasing requests. These tremendous requests cannot be processed by IoT devices due to the computational power of IoT devices and the disparate requirements of requests. Cloud computing seemed appealing to service these requests due to its remarkable characteristics. However, the physical gap between the Cloud datacenter and IoT devices causes a huge latency overhead. Furthermore, the centralized datacenter also experiences tremendous power consumption. Therefore, the Fog computing layer is introduced as a complementary layer to Cloud computing in between the IoT and the Cloud layer. Fog computing appears as cutting-edge technology to leverage the large computations in the Fog layer, thereby minimizing the latency gap and the power consumption of the datacenters. A Mist layer is placed in between the Fog and IoT layer to enable routing of the requests to Fog nodes and Cloud virtual machines. Many articles propose different load balancing strategies to distribute the loads uniformly in both Fog and Cloud layers. This contribution considers a wide spectrum of reviews as well as research articles into consideration ranging from 2010 to 2022. Besides, a layered architecture is proposed considering the IoT, Mist, Fog, and Cloud layers. Furthermore, research queries are analyzed and answered about the load balancing for these evolving paradigms, critical issues and challenges, and future directions. It is believed that this contribution would be a helping hand for the nascent researchers to get an insight into evolving paradigms, algorithms, issues, challenges, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agarwal M, Srivastava DGMS (2017) Cloud computing: a paradigm shift in the way of computing. Int J Mod Educ Comput Sci 9(12):38–48. https://doi.org/10.5815/ijmecs.2017.12.05

    Article  Google Scholar 

  2. Nazeer K, Banu N (2015) Cloud computing simulation tools—a study. Int J Fuzzy Math Arch Int J 7(1):13–25

    Google Scholar 

  3. Lowe D, Galhotra B (2018) An overview of pricing models for using Cloud services with analysis on Pay-Per-Use model. Int J Eng Technol 7(3):248–254. https://doi.org/10.14419/ijet.v7i3.12.16035

    Article  Google Scholar 

  4. Jyoti A, Shrimali M, Mishra R (2019) Cloud computing and load balancing in cloud computing-survey. In: Confluence, pp 51–55. https://doi.org/10.1109/MTAS.2004.1371634

  5. Adhikari M, Amgoth T (2018) Heuristic-based load-balancing algorithm for IaaS cloud. Futur Gener Comput Syst 81:156–165. https://doi.org/10.1016/j.future.2017.10.035

    Article  Google Scholar 

  6. Dogo EM, Salami AF, Aigbavboa CO, Nkonyana T. Taking Cloud computing to the extreme edge: a review of mist computing for smart cities and industry 4.0 in Africa. https://doi.org/10.1007/978-3-319-99061-3_7

  7. Liyanage M, Chang C, Srirama SN (2016) mePaaS: Mobile-embedded platform as a service for distributing Fog computing to edge nodes. In: 2016 17th international conference on parallel and distributed computing, applications and technologies (PDCAT), Guangzhou, China, 16–18, pp 73–80 (Dec 2016). https://doi.org/10.1109/PDCAT.2016.030

  8. Preden JS, Tammemae K, Jantsch A, Leier M, Riid A, Calis E (2015) The benefits of selfawareness and attention in Fog and Mist computing. IEEE Comput Soc Comput 48(7):37–45

    Article  Google Scholar 

  9. Preden J. Evolution of Mist computing from Fog and Cloud computing THINNECT (2014), http://www.thinnect.com/static/2016/08/Cloud-Fog-Mist-computing-062216.pdf. Accessed 15 Mar 2018

  10. Goudarzi M, Palaniswami M, Buyya R (2022) Scheduling IoT applications in edge and fog computing environments: a taxonomy and future directions. ACM Comput Surv

  11. Ketu S, Mishra PK (2022) Cloud, fog and mist computing in IoT: an indication of emerging opportunities. IETE Tech Rev 39(3):713–724

    Article  Google Scholar 

  12. Saeik F, Avgeris M, Spatharakis D, Santi N, Dechouniotis D, Violos J, Papavassiliou S (2021) Task offloading in edge and cloud computing: a survey on mathematical, artificial intelligence and control theory solutions. Computer Networks 195:108177

    Article  Google Scholar 

  13. Angel NA, Ravindran D, Vincent PM, Srinivasan K, Hu YC (2022) Recent advances in evolving computing paradigms: cloud, edge, and fog technologies. Sensors 22(1):196

    Article  Google Scholar 

  14. Khan T, Tian W, Buyya R (2021) Machine learning (ML)-centric resource management in cloud computing: a review and future directions. arXiv preprint arXiv:2105.05079

  15. Shafiq DA, Jhanjhi NZ, Abdullah A (2021) Load balancing techniques in cloud computing environment: a review. J King Saud Univ-Comput Inf Sci

  16. Mishra K, Majhi S (2020) A state-of-art on cloud load balancing algorithms. Int J Comput Digital Syst 9(2):201–220

    Article  Google Scholar 

  17. Alli AA, Alam MM (2020) The fog cloud of things: a survey on concepts, architecture, standards, tools, and applications. Internet Things 9:100177. https://doi.org/10.1016/j.iot.2020.100177

    Article  Google Scholar 

  18. Aslanpour MS, Gill SS, Toosi AN (2020) Performance evaluation metrics for cloud, fog and edge computing: a review, taxonomy, benchmarks and standards for future research. Internet Things 12:100273. https://doi.org/10.1016/j.iot.2020.100273

    Article  Google Scholar 

  19. Moura J, Hutchison D (2020) Fog computing systems: state of the art, research issues and future trends, with a focus on resilience. J Netw Comput Appl 169:102784. https://doi.org/10.1016/j.jnca.2020.102784

    Article  Google Scholar 

  20. Yunana K, Alfa AA, Misra S, Damasevicius R, Maskeliunas R, Oluranti J (2021) Internet of things: applications, adoptions and components—a conceptual overview. In: Abraham A, Hanne T, Castillo O, Gandhi N, Nogueira Rios T, Hong TP (eds) Hybrid intelligent systems HIS advances in intelligent systems and computing. Springer, Cham. https://doi.org/10.1007/978‐3‐030‐73050‐5_50

    Chapter  Google Scholar 

  21. Cao K, Liu Y, Meng G, Sun Q (2020) An overview on edge computing research. IEEE Access 8:85714–85728. https://doi.org/10.1109/ACCESS.2020.2991734

    Article  Google Scholar 

  22. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A (2019) Edge computing: a survey. Future Gener Comput Syst 97:219–235. https://doi.org/10.1016/j.future.2019.02.050

    Article  Google Scholar 

  23. Liu Y, Fieldsend JE, Min G (2017) A framework of fog computing: architecture, challenges, and optimization. IEEE Access 5:25445–25454. https://doi.org/10.1109/ACCESS.2017.2766923

    Article  Google Scholar 

  24. Abdulkareem KH, Mohammed MA, Gunasekaran SS, Al-Mhiqani MN, Mutlag AA, Mostafa SA, Ali NS, Ibrahim DA (2019) A review of fog computing and machine learning: concepts, applications, challenges, and open issues. IEEE Access 7:153123–153140. https://doi.org/10.1109/ACCESS.2019.2947542

    Article  Google Scholar 

  25. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All one needs to know about fog computing and related edge computing paradigms: a complete survey. J Syst Archit 98:289–330. https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  26. Bangui H, Rakrak S, Raghay S, Buhnova B (2018) Moving to the edge-cloud-of-things: recent advances and future research directions. Electronics 7:309. https://doi.org/10.3390/electronics7110309

    Article  Google Scholar 

  27. Atlam HF, Walters RJ, Wills GB (2018) Fog computing and the internet of things: a review. Big Data Cogn Comput 2:10. https://doi.org/10.3390/bdcc2020010

    Article  Google Scholar 

  28. Elazhary H (2019) Internet of Things (IoT), Mobile cloud, cloudlet, mobile IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms: disambiguation and research directions. J Netw Comput Appl 128:105–140. https://doi.org/10.1016/j.jnca.2018.10.021

    Article  Google Scholar 

  29. Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun Surv Tutor 20:1826–1857. https://doi.org/10.1109/COMST.2018.2814571

    Article  Google Scholar 

  30. Mouradian C, Naboulsi D, Yangui S, Glitho RH, Morrow MJ, Polakos PA (2018) A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun Surv Tutor 20:416–464. https://doi.org/10.1109/COMST.2017.2771153

    Article  Google Scholar 

  31. Yong B, Wei W, Li KC, Shen J, Zhou Q, Wozniak M, Damaševičius R (2020) Ensemble machine learning approaches for webshell detection in Internet of things environments. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.4085

    Article  Google Scholar 

  32. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutor 19:2322–2358. https://doi.org/10.1109/COMST.2017.2745201

    Article  Google Scholar 

  33. Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on Internet of Things: architecture, enabling technologies, security and privacy, and applications. IEEE Internet Things J 4:1125–1142. https://doi.org/10.1109/JIOT.2017.2683200

    Article  Google Scholar 

  34. Mahmud R, Kotagiri R, Buyya R (2018) Fog computing: a taxonomy, survey and future directions. In: Di Martino B, Li K-C, Yang LT, Esposito A (eds) Internet of everything. Internet of Things (technology, communications and computing). Singapore, Springer, pp 103–130. https://doi.org/10.1007/978‐981‐10‐5861‐5_5

    Chapter  Google Scholar 

  35. Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog computing: architecture, key technologies, applications and open issues. J Netw Comput Appl 98:27–42. https://doi.org/10.1016/j.jnca.2017.09.002

    Article  Google Scholar 

  36. Atzori L, Iera A, Morabito G (2017) Understanding the Internet of Things: definition, potentials, and societal role of a fast evolving paradigm. Ad Hoc Netw 56:122–140. https://doi.org/10.1016/j.adhoc.2016.12.004

    Article  Google Scholar 

  37. Kumar A, Chawla DP (2020) A systematic literature review on load balancing algorithms of virtual machines in a Cloud computing environment. Int J Comput Sci Eng. https://doi.org/10.26438/ijcse/v6i8.771778

    Article  Google Scholar 

  38. Mishra SK, Sahoo B, Parida PP (2020) Load balancing in cloud computing: a big picture. J King Saud Univ-Comput Inf Sci 32(2):149–158. https://doi.org/10.1016/j.jksuci.2018.01.003

    Article  Google Scholar 

  39. Kumar P, Kumar R (2019) Issues and challenges of load balancing techniques in cloud computing: a survey. ACM Comput Surv 51(6):1–35. https://doi.org/10.1145/3281010

    Article  Google Scholar 

  40. Kamlesh L, Kumar P, Munish B (2019) An extensive survey on load balancing techniques in cloud computing. J Gujarat Res Soc 21(10):309–319. https://doi.org/10.17148/IJARCCE.2015.4587

    Article  Google Scholar 

  41. Afzal S, Kavitha G (2019) Load balancing in cloud computing—a hierarchical taxonomical classification. J Cloud Comput Adv Syst Appl 8(1):1–24. https://doi.org/10.1186/s13677-019-0146-7

    Article  Google Scholar 

  42. Hota A, Mohapatra S, Mohanty S (2019) Survey of different load balancing approach-Based algorithms in cloud computing a comprehensive review. In: Behera H, Nayak J, Naik B, Abraham A (eds) Computational intelligence in data mining. Advances in intelligent systems and computing, vol 711, pp 99–110. https://doi.org/10.1007/978-981-10-8055-5

  43. Kathalkar PR, Deorankar AV (2018) A review on different load balancing algorithm in cloud computing. Int Res J Eng Technol 5(2):1–3. https://doi.org/10.26438/ijcse/v6i7.704707

    Article  Google Scholar 

  44. Kumar DS, Raj DEGDP (2018) A literature review on load balancing mechanisms in cloud computing. Int J Adv Res Comput Sci 9(1):432–435

    Article  MathSciNet  Google Scholar 

  45. Kaur M, Verma DB (2018) A review on various load balancing algorithms with Merits-Demerits in cloud computing. Int J Adv Eng Res Dev 5(5)

  46. Mala Y, Prasad JS (2018) A review on load balancing algorithms in cloud computing environment. Int J Comput Sci Eng 6(8):771–778. https://doi.org/10.26483/ijarcs.v9i2.5837

    Article  Google Scholar 

  47. Hamadah S (2017) A survey: a comprehensive study of static, dynamic and hybrid load balancing algorithms. Int J Comput Sci Inf Technol Secur 7(2):27–32

    Google Scholar 

  48. Sutagatti SS, Kulkarni SG (2017) Comparative analysis and evaluation of load balancing algorithms. Int J Comput Appl 171(5):6–11. https://doi.org/10.5120/ijca2017915031

    Article  Google Scholar 

  49. Deepa T, Cheelu DD (2017) Load balancing algorithms in cloud computing: a comparative study. Int J Innov Adv Comput Sci 6(2):1–6

    Google Scholar 

  50. Archana M, Shastry M (2017) A review paper on various load balancing algorithms in cloud computing. J Eng Appl Sci 12(9):8579–8585

    Google Scholar 

  51. Gupta S, Dixit A, Dev H (2017) A study on various load balancing algorithms for response time reduction in cloud. Int J Curr Eng Sci Res 4(10)

  52. Thakur A, Goraya MS (2017) A taxonomic survey on load balancing in cloud. J Netw Comput Appl 98:43–57. https://doi.org/10.1016/j.jnca.2017.08.020

    Article  Google Scholar 

  53. Alam M, Ahmad Khan Z (2017) Issues and challenges of load balancing algorithm in cloud computing environment. Indian J Sci Technol 10(25):1–12. https://doi.org/10.17485/ijst/2017/v10i25/105688

    Article  Google Scholar 

  54. Joshi S, Kumari U (2017) A comprehensive analysis of existing load balancing algorithms in cloud network. Mody Univ Int J Comput Eng Res 1(2):71–75. https://doi.org/10.13140/RG.2.2.15001.06247

    Article  Google Scholar 

  55. Singh AB, Bhat S, Raju R, D’Souza R (2017) Survey on various load balancing techniques in cloud computing. Adv Comput 7(2):28–34. https://doi.org/10.17148/IJARCCE.2015.4587

    Article  Google Scholar 

  56. JafarnejadGhomi E, MasoudRahmani A, NasihQader N (2017) Load-balancing algorithms in cloud computing: a survey. J Netw Comput Appl 88:50–71. https://doi.org/10.1016/j.jnca.2017.04.007

    Article  Google Scholar 

  57. Milani AS, Navimipour NJ (2016) Load balancing mechanisms and techniques in the cloud environments: systematic literature review and future trends. J Netw Comput Appl 71:86–98. https://doi.org/10.1016/j.jnca.2016.06.003

    Article  Google Scholar 

  58. Elngomi K, Khanfar ZM (2016) A comparative study of load balancing algorithms: a review paper. Int J Comput Sci Mob Comput 5(6):448–458

    Google Scholar 

  59. Gabi D, Samad A, Zainal A (2015) Systematic review on existing load balancing techniques in cloud computing. Int J Comput Appl 125(9):16–24. https://doi.org/10.5120/ijca2015905539

    Article  Google Scholar 

  60. Karthika K, Kanakambal RBK (2015) Load balancing algorithm review’s in Cloud environment servers in datacenters. Int J Eng Res Gen Sci 3(3):661–667

    Google Scholar 

  61. Kapoor S (2015) A survey on dynamic load balancing algorithms in cloud computing. Adv Comput Sci Inf Technol 2(7):87–91

    Google Scholar 

  62. Mj H, Martin JP, Sastri Y, Babu A (2014) A review on load balancing algorithms in cloud. Comput Technol Appl 5(2):640–645

    Google Scholar 

  63. Sanghavi HS, Patalia DTP (2014) Load balancing algorithms for the cloud computing environment: a review. J Inf Knowl Res Comput Eng 3(2):591–598

    Google Scholar 

  64. Buyya R, Yeo CS, Venugopal S (2008) Market-oriented cloud computing: vision, hype, and reality for delivering it services as computing utilities. In: 2008 10th IEEE international conference on high performance computing and communications, pp 5–13. IEEE

  65. Minh QT, Nguyen DT, Van Le A, Nguyen HD, Truong A (2017) Toward service placement on fog computing landscape. In: Proceedings of the 2017 4th NAFOSTED conference on information and computer science, 24–25 November 2017. IEEE. Hanoi, Vietnam, pp 291–296. https://doi.org/10.1109/NAFOSTED.2017.8108080.

  66. Gonzalez NM, Goya WA, de Fatima Pereira R, Langona K, Silva EA, Melo de Brito Carvalho TC, Miers CC, Mangs J‐E, Sefidcon A (2016) Fog computing: data analytics and cloud distributed processing on the network edges. In: Proceedings of the 2016 35th international conference of the Chilean computer science society (SCCC), 10 October 2016–10 February 2017. IEEE. Valparaiso, Chile, 2016, pp 1–9. https://doi.org/10.1109/SCCC.2016.7836028

  67. Iorga M, Feldman L, Barton R, Martin MJ, Goren N, Mahmoudi C (2018) Fog Computing Conceptual Model; Special Publication (NIST SP) 500–325; National Institute of Standards and Technology, Gaithersburg, MD, USA.https://doi.org/10.6028/NIST.SP.500-325

  68. Bouzarkouna I, Sahnoun M, Sghaier N, Baudry D, Gout C (2018) Challenges facing the industrial implementation of fog computing. In: Proceedings of the 2018 IEEE 6th international conference on Future Internet of Things and Cloud (FiCloud), 6–8 August 2018, IEEE, Barcelona, Spain, pp 341–348. https://doi.org/10.1109/FiCloud.2018.00056.

  69. Galambos P (2020) Cloud, fog, and mist computing: advanced robot applications. IEEE Syst Man Cybern Mag 6:41–45. https://doi.org/10.1109/MSMC.2018.2881233

    Article  Google Scholar 

  70. Mahmoud R, Yousuf T, Aloul F, Zualkernan I (2015) Internet of Things (IoT) Security: current status, challenges and prospective measures. In: Proceedings of the 10th international conference for Internet Technology and Secured Transactions (ICITST), London, UK, 14–16 December, pp 336–341

  71. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener Comput Syst 29:1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  72. Recommendation‐ITU‐T Y.2060 Overview of the Internet of Things, Document, International Telecommunication Union. June 2012. Article no. E 38086. https://www.itu.int/rec/T‐REC‐Y.2060‐201206‐I. Accessed 15 June 2012

  73. Khan WZ, Aalsalem MY, Khan MK, Arshad Q (2016) Enabling consumer trust upon acceptance of IoT technologies through security and privacy model. In: Park JJ, Jin H, Jeong Y‐S, Khan MK (eds) Advanced multimedia and ubiquitous engineering. Lecture Notes in Electrical Engineering, vol 393. Springer, Singapore, pp 111–117. https://doi.org/10.1007/978‐981‐10‐1536‐6_15

  74. Saichaitanya P, Karthik N, Surender D (2016) Recent trends in Iot. J Inf Comput Sci 9:9

    Google Scholar 

  75. Khan N, Naim A, Hussain MR, Naveed QN, Ahmad N, Qamar S (2019) The 51 V’s of big data: survey, technologies, characteristics, opportunities, issues and challenges. In: Proceedings of the international conference on omni‐layer intelligent systems, 5–7 May 2019. ACM. Crete, Greece, pp 19–24. https://doi.org/10.1145/3312614.3312623

  76. Kaur R, Luthra P (2014) Load balancing in cloud system using max min and min min algorithm. Int J Comput Appl 0975–8887:31–34

    Google Scholar 

  77. Hung TC, Phi NX (2016) Study the effect of parameters to load balancing in cloud computing. Int J Comput Netw Commun 8(3):33–45. https://doi.org/10.5121/ijcnc.2016.8303

    Article  Google Scholar 

  78. Afzal S, Ganesh K (2019) A taxonomic classification of load balancing metrics: a systematic review. In: 33rd Indian Eng. Congr., no. January

  79. Mishra SK et al (2020) Energy-aware task allocation for multi-cloud networks. IEEE Access 8:178825–178834. https://doi.org/10.1109/ACCESS.2020.3026875

    Article  Google Scholar 

  80. Adaniya A, Paliwal K (2019) A proposed load balancing algorithm for maximizing response time for cloud computing. Int J Res Appl Sci Eng Technol 7(Iv)

  81. Choudhary R, Kothari DA (2018) A novel technique for load balancing in cloud computing environment. Int J Softw Hardw Res Eng 6(6):1–5. https://doi.org/10.5120/ijca2018917523

    Article  Google Scholar 

  82. Goyal S, Verma MK (2016) Load balancing techniques in cloud computing environment—a review. Int J Adv Res Comput Sci Softw Eng 6(4)

  83. Fatima SG, Fatima SK, Sattar SA, Khan NA, Adil S (2019) Cloud computing and load balancing. Int J Adv Res Eng Technol 10(2):189–209. https://doi.org/10.34218/IJARET.10.2.2019.019

    Article  Google Scholar 

  84. Kamboj S, Ghumman MNS (2016) A novel approach of optimizing performance using K-means clustering in cloud computing. Int J Comput Technol 15(14):7435–7443. https://doi.org/10.24297/ijct.v15i14.4942

    Article  Google Scholar 

  85. Siddique N, Adeli H (2015) Nature inspired computing: an overview and some future directions. Cognit Comput 7(6):706–714. https://doi.org/10.1007/s12559-015-9370-8

    Article  Google Scholar 

  86. Somani R, Ojha J (2014) A hybrid approach for VM load balancing in cloud using CloudSim. Int J Sci Eng Technol Res 3(6):1734–1739

    Google Scholar 

  87. Nayak P, Vania J (2015) Load balancing using modified Throttled algorithm. Int J Sci Res Dev 3(3):3614–3616

    Google Scholar 

  88. Ghosh S, Banerjee C (2016) Priority based modified throttled algorithm in cloud computing. In: Proc. Int. Conf. Inven. Comput. Technol. ICICT. https://doi.org/10.1109/INVENTIVE.2016.7830175

  89. Falisha IN, Purboyo TW, Latuconsina R, Robin AR (2018) Experimental model for load balancing in cloud computing using equally spread current execution load algorithm. Int J Appl Eng Res 13(2):1134–1138

    Google Scholar 

  90. Lamba S, Kumar D (2014) A comparative study on load balancing algorithms with different service broker policies in cloud computing. Int J Comput Sci Inf Technol 5(4):5671–5677

    Google Scholar 

  91. Sachdeva R, Kakkar S (2017) A novel approach in cloud computing for load balancing using composite algorithms. Int J Adv Res Comput Sci Softw Eng 7(2):51–56. https://doi.org/10.23956/ijarcsse/v7i2/0119

    Article  Google Scholar 

  92. Subalakshmi S, Malarvizhi N (2017) Enhanced hybrid approach for load balancing algorithms in cloud computing. Int J Sci Res Comput Sci Eng Inf Technol 2(2):136–142

    Google Scholar 

  93. Rathore J, Keswani B, Rathore VS (2018) An efficient load balancing algorithm for cloud environment. J Invent Comput Sci Commun Technol 4(1):37–41

    Google Scholar 

  94. Aliyu AN, Souley PB (2019) Performance analysis of a hybrid approach to enhance load balancing in a heterogeneous cloud environment. Int J Adv Sci Res Eng 5(7):246–257. https://doi.org/10.31695/ijasre.2019.33430

    Article  Google Scholar 

  95. Khanchi M, Tyagi S (2016) An efficient algorithm for load balancing in cloud computing. Int J Eng Sci Res Technol 5(6):468–475

    Google Scholar 

  96. Babu KRR, Joy AA, Samuel (2017) Load balancing of tasks using hybrid technique with analytical method of esce & throttled algorithm. Int J Nov Res Dev 2(6):61–66

  97. Alamin MA, Elbashir MK, Osman AA (2017) A load balancing algorithm to enhance the response time in cloud computing. J Basic Appl Sci 2(2):473–490

    Google Scholar 

  98. Mishra S, Tondon R (2016) A shared approach of dynamic load balancing in cloud computing. Int J Sci Res Sci Eng Technol 2(2):632–638

    Google Scholar 

  99. Kaurav NS, Yadav P (2019) A genetic algorithm based load balancing approach for resource optimization for cloud computing environment. Int J Inf Comput Sci 6(3):175–184

    Google Scholar 

  100. Issawi SF, Al Halees A, Radi M (2015) An efficient adaptive load balancing algorithm for cloud computing under bursty workloads. Eng Technol Appl Sci Res 5(3):795–800

    Article  Google Scholar 

  101. Richhariya V, Dubey R, Siddiqui R (2015) Hybrid technique for load balancing in cloud computing using modified round robin algorithms. J Comput Math Sci 6(12):688–695

    Google Scholar 

  102. Moly MI, Hossain A, Lecturer S, Roy O (2019) Load balancing approach and algorithm in cloud computing environment. Am J Eng Res 8(4):99–105

    Google Scholar 

  103. Mayur S, Chaudhary N (2019) Enhanced weighted round robin load balancing algorithm in cloud computing. Int J Innov Technol Explor Eng 8(9):148–151. https://doi.org/10.35940/ijitee.I1030.0789S219

    Article  Google Scholar 

  104. Manaseer S, Alzghoul M, Mohmad M (2019) An advanced algorithm for load balancing in cloud computing using MEMA technique. Int J Innov Technol Explor Eng 8(3):36–41

    Google Scholar 

  105. Arshad Ali S, Member S, Alam M (2019) Resource Aware Min-Min (RAMM) algorithm for resource allocation in cloud computing environment, vol 3, pp 1863–1870. https://doi.org/10.35940/ijrte.C5197.098319

  106. Patel G, Mehta R, Bhoi U (2015) Enhanced load balanced min-min algorithm for static meta task scheduling in cloud computing. Procedia Comput Sci 57:545–553. https://doi.org/10.1016/j.procs.2015.07.385

    Article  Google Scholar 

  107. Shanthan BJH, Arockiam L (2018) Resource based load balanced Min Min Algorithm (RBLMM) for static meta task scheduling in cloud. IC-ACT’18, pp 1–5

  108. Rajesh ME, Mahalakshmi MJ (2015) Optimization of resource allocation using FCFS scheduling in cloud computing. Optimization 5(2):20–26

    Google Scholar 

  109. El Amrani C, GibetTani H (2018) Smarter round robin scheduling algorithm for cloud computing and big data. J Data Mining Digital Humanit

  110. Srinath HMDM (2015) Memory constrained load shared minimum execution time grid task scheduling algorithm in a heterogeneous environment. Indian J Sci Technol 8(15):15

    Google Scholar 

  111. Li Y, Niu J, Zhang J, Atiquzzaman M, Long X (2016) Real-time scheduling for periodic tasks in homogeneous multi-core system with minimum execution time. In: International conference on collaborative computing: networking, applications and work sharing. Springer, Cham, pp 175–187

  112. Wu X, Huang D, Sun YE, Bu X, Xin Y, Huang H (2017) An efficient allocation mechanism for crowd sourcing tasks with minimum execution time. In: International conference on intelligent computing. Springer, Cham 2017, August 156–167

  113. Priyadarsini RJ, Arockiam L (2014) Performance evaluation of min–min and max–min algorithms for job scheduling in federated cloud. Int J Comput Appl 99(18):47–54

    Google Scholar 

  114. Patel G, Mehta R, Bhoi U (2015) Enhanced load balanced min–min algorithm for static meta task scheduling in cloud computing. Proc Comput Sci 57:545–553

    Article  Google Scholar 

  115. Rajput SS, Kushwah VS (2016) A genetic based improved load balanced min–min task scheduling algorithm for load balancing in cloud computing. In: 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, December 677–681

  116. Ahmed Z, Ashrafi AF, Mahbub M (2017) Clustering based max–min scheduling in cloud environment. Environment 9:10

    Google Scholar 

  117. Moggridge P, Helian N, Sun Y, Lilley M, Veneziano V, Eaves M (2017) Revising max–min for scheduling in a cloud computing context. In: 2017 IEEE 26th international conference on enabling technologies: infrastructure for collaborative enterprises (WETICE). IEEE. 2017, June, pp 125–130

  118. Konjaang J, Ayob FH, Muhammed A (2017) An optimized max–min scheduling algorithm in cloud computing. J Theory Appl Inf Technol 95(9)

  119. Gu L, Zeng D, Guo S, Barnawi A, Xiang Y (2015) Cost-efficient resource management in Fog computing supported medical cps. IEEE Trans Emerg Topics Comput 5(1):108–119

    Article  Google Scholar 

  120. Jingtao S, Lin F, Zhou X, Lu X (2015) Steiner tree based optimal resource caching scheme in Fog computing. China Commun 12(8):161–168

    Article  Google Scholar 

  121. Verma M, Bhardwaj N, Yadav AK (2016) Real time efficient scheduling algorithm for load balancing in Fog computing environment. Int J Inf Technol Comput Sci 8(4):1

    Google Scholar 

  122. Islam T, Hashem M (2018) Task scheduling for big data management in Fog infrastructure. Paper presented at the 2018 21st International Conference of Computer and Information Technology (ICCIT)

  123. Kiritbhai PB, Shah NY (2017) Optimizing load balancing technique for efficient load balancing. Int J Innov Res Technol 4(6):39–44

    Google Scholar 

  124. Ehsanimoghadam P, Effatparvar M (2018) Load balancing based on bee colony algorithm with partitioning of public clouds. Int J Adv Comput Sci Appl 9(4):450–455. https://doi.org/10.14569/IJACSA.2018.090462

    Article  Google Scholar 

  125. Katyal M, Mishra A (2013) A Comparative study of load balancing algorithms in cloud computing environment. Int J Distrib Cloud Comput 1(2):2013. https://doi.org/10.17485/ijst/2016/v9i20/85866

    Article  Google Scholar 

  126. Dam S, Mandal G, Dasgupta K, Dutta P (2015) Genetic algorithm and gravitational emulation based hybrid load balancing strategy in cloud computing. In: Proc. 2015 3rd int. conf. comput. commun. control inf. technol. C3IT 2015. https://doi.org/10.1109/C3IT.2015.7060176.

  127. Parmesivan YAP, Hasan S, Muhammed A (2018) Performance evaluation of load balancing algorithm for virtual machine in data centre in cloud computing. Int J Eng Technol 7(4.31):386–390

    Google Scholar 

  128. Yadav A (2015) Load balancing in cloud computing environment using hybrid approach (ESCEL and PSO) algorithms. Adv Comput Sci Inf Technol 2(8):10–13

    Google Scholar 

  129. Verma P, Shrivastava S, Pateriya RK (2017) Enhancing load balancing in cloud computing by ant colony optimization method. Int J Comput Eng Res Trends 4(6):277–284. https://doi.org/10.23883/ijrter.2018.4101.ss6y8

    Article  Google Scholar 

  130. Kumar R, Prashar T (2015) Performance analysis of load balancing algorithms in cloud computing. Int J Comput Appl 120(7):19–27

    Google Scholar 

  131. Xhafa F, Abraham A (2010) Computational models and heuristic methods for grid scheduling problems. Futur Gener Comput Syst 26(4):608–621

    Article  Google Scholar 

  132. Bitam S, Zeadally S, Mellouk A (2018) Fog computing job scheduling optimization based on bees swarm. Enterprise Inf Syst 12(4):373–397

    Article  Google Scholar 

  133. Liu Q, Wei Y, Leng S, Chen Y (2017) Task scheduling in Fog enabled Internet of Things for smart cities. Paper presented at: Proceedings of the IEEE 17th international conference on communication technology (ICCT), Chengdu, China, pp 975–980

  134. Wang J, Li D (2019) Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors 19(5):1023

    Article  Google Scholar 

  135. Nazir S, Shafiq S, Iqbal Z, Zeeshan M, Tariq S, Javaid N (2018) Cuckoo optimization algorithm based job scheduling using Cloud and Fog computing in smart grid. Paper presented at: Proceedings of the international conference on intelligent networking and collaborative systems, Bratislava, Slovakia, pp 34–46.

  136. Wang S, Zhao T, Pang S (2020) Task scheduling algorithm based on improved firework algorithm in fog computing. IEEE Access 8:32385–32394

    Article  Google Scholar 

  137. Chaturvedi M, Agrawal PD (2017) Optimal load balancing in cloud computing by efficient utilization of virtual machines. Int J Innov Res Comput Commun Eng 5(12):17705–17713. https://doi.org/10.15680/IJIRCCE.2017

    Article  Google Scholar 

  138. Singh AN, Prakash S (2018) Wamlb: weighted active monitoring load balancing in cloud computing. Adv Intell Syst Comput 654:677–685. https://doi.org/10.1007/978-981-10-6620-7_65

    Article  Google Scholar 

  139. Soni G, Kalra M (2014) A novel approach for load balancing in cloud datacenter. In: Souvenir 2014 IEEE Int Adv Comput Conf IACC 2014, pp 807–812. https://doi.org/10.1109/IAdCC.2014.6779427

  140. Kaur S, Sharma T (2018) Efficient load balancing using improved central load balancing technique. In: Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, pp 1–5.https://doi.org/10.1109/ICISC.2018.8398857

  141. Haidri RA, Katti CP, Saxena PC (2014) A load balancing strategy for cloud computing environment. In: Int. Conf. Signal Propag. Comput. Technol. ICSPCT 2014, pp 636–641.https://doi.org/10.1109/ICSPCT.2014.6884914

  142. Kumar M, Sharma SC (2017) Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud computing. Procedia Comput Sci 115:322–329. https://doi.org/10.1016/j.procs.2017.09.141

    Article  Google Scholar 

  143. Banerjee S, Adhikari M, Kar S, Biswas U (2015) Development and analysis of a new Cloudlet allocation strategy for QoS improvement in cloud. Arab J Sci Eng 40(5):1409–1425. https://doi.org/10.1007/s13369-015-1626-9

    Article  MathSciNet  Google Scholar 

  144. Kumar BS, Parthiban L (2014) An Implementation of load balancing policy for virtual machines associated with a datacenter. Int J Comput Sci Eng Technol 5(03):253–261

    Google Scholar 

  145. Patel P, Prajapati D, Suthar K (2017) An efficient and modified load balancing method for cloud computing. Int J Innov Res Comput Commun Eng 5(4):8198–8205. https://doi.org/10.15680/IJIRCCE.2017

    Article  Google Scholar 

  146. Rekha PM, Dakshayini M (2018) Dynamic cost-load aware service broker load balancing in virtualization environment. In: Int. Conf. Comput. Intell. Data Sci. (ICCIDS 2018), vol 132, pp 744–751. https://doi.org/10.1016/j.procs.2018.05.086

  147. Bhatt HH, Bheda HA (2016) Enhance load balancing using flexible load sharing in cloud computing. In: 1st Int Conf. Next Gener. Comput. Technol. 4–5 (September, 72–76. https://doi.org/10.1109/NGCT.2015.7375085

  148. Domanal SG, Reddy GRM (2014) Optimal load balancing in cloud computing by efficient utilization of virtual machines. In: 6th Int Conf. Commun. Syst. Networks, pp 1–4. https://doi.org/10.1109/COMSNETS.2014.6734930

  149. Javanmardi S, Shojafar M, Amendola D, Cordeschi N, Liu H, Abraham A (2014) Hybrid job scheduling algorithm for cloud computing environment, In Proceedings of the fifth international conference on innovations in bio-inspired computing and applications IBICA, Springer, Cham, pp. 43–52.

  150. Jeyakrishnan V, Sengottuvelan P (2017) A hybrid strategy for resource allocation and load balancing in virtualized datacenters using BSO algorithms. Wirel Pers Commun 94(4):2363–2375

    Article  Google Scholar 

  151. Wei XJ, Bei W, Jun L (2017) SAMPGA task scheduling algorithm in cloud computing. In: 36th Chinese Control Conference (CCC). IEEE, pp 5633–5637

  152. Alla HB, Alla SB, Ezzati A (2017) A priority based task scheduling in cloud computing using a hybrid MCDM model. In: International symposium on ubiquitous networking. Springer, Cham, pp 235–246

  153. Rani S, Suri PK (2018) An efficient and scalable hybrid task scheduling approach for cloud environment. Int J Inf Technol. https://doi.org/10.1007/s41870-018-0175-3

    Article  Google Scholar 

  154. Jena UK, Das PK, Kabat MR (2020) Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment. J King Saud Univ-Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2020.01.012

    Article  Google Scholar 

  155. Thakur AS, Biswas T, Kuila P (2020) Binary quantum-inspired gravitational search algorithm-based multi-criteria scheduling for multi-processor computing systems. J Supercomput 77(1):796–817

    Article  Google Scholar 

  156. Mishra K, Pradhan R, Majhi SK (2021) Quantum-inspired binary chaotic salp swarm algorithm (QBCSSA)-based dynamic task scheduling for multiprocessor cloud computing systems. J Supercomput 77(9):10377–10423

    Article  Google Scholar 

  157. Naha RK, Garg S, Chan A, Battula SK (2020) Deadline-based dynamic resource allocation and provisioning algorithms in fog-cloud environment. Future Gener Comput Syst 104:131–141

    Article  Google Scholar 

  158. Auluck N, Rana O, Nepal S, Jones A, Singh A (2019) Scheduling real time security aware tasks in fog networks. IEEE Trans Serv Comput. https://doi.org/10.1109/TSC.2019.2914649

    Article  Google Scholar 

  159. Abreu DP, Velasquez K, Assis MRM et al (2018) A rank scheduling mechanism for fog environments. Paper presented at: Proceedings of the IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), pp 363–369

  160. Liu L, Qi D, Zhou N, Wu Y (2018) A task scheduling algorithm based on classification mining in fog computing environment. Wirel Commun Mob Comput 2018:1–11. https://doi.org/10.1155/2018/2102348

    Article  Google Scholar 

  161. WangW,Wu G, Guo Z, Qian L, Ding L, Yang F (2019) Data scheduling and resource optimization for fog computing architecture in industrial IoT. Paper presented at: Proceedings of the International Conference on Distributed Computing and Internet Technology, pp 141–149

  162. Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: An emerging direction in modern search technology. In: Handbook of metaheuristics. Springer, Boston, MA, pp 457–474

  163. Özcan E, Bilgin B, Korkmaz EE (2006) Hill climbers and mutational heuristics in hyperheuristics. In: Parallel problem solving from nature-PPSN IX. Springer, Berlin, pp 202–211

  164. Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Handbook of metaheuristics. Springer, Boston, MA, pp 449–468

  165. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724

    Article  Google Scholar 

  166. Tsai CW, Huang WC, Chiang MH, Chiang MC, Yang CS (2014) A hyper-heuristic scheduling algorithm for Cloud. IEEE Trans Cloud Comput 2(2):236–250

    Article  Google Scholar 

  167. Kaur G, Kaur S, Jalandhar CM (2016) Improved hyper-heuristic scheduling with load-balancing and RASA for cloud computing systems. Int J Grid Distrib Comput 9(1):13–24

    Article  Google Scholar 

  168. Abdellatef H, Khalil-Hani M, Shaikh-Husin N, Ayat SO (2022) Accurate and compact convolutional neural network based on stochastic computing. Neurocomputing 471:31–47

    Article  Google Scholar 

  169. Shen D, Saab SS (2021) Noisy output based direct learning tracking control with markov nonuniform trial lengths using adaptive gains. IEEE Trans Autom Control

  170. Alkhanak EN, Lee SP (2018) A hyper-heuristic cost optimisation approach for scientific workflow scheduling in cloud computing. Future Gener Comput Syst 480–506

  171. Sen PC, Hajra M, Ghosh M (2020) Supervised classification algorithms in machine learning: a survey and review. In: Emerging technology in modelling and graphics. Springer, pp 99–111

  172. Celebi ME, Aydin K (2016) Unsupervised learning algorithms. Springer, New York

    Book  Google Scholar 

  173. Engelen V, Jesper E, Hoos HH (2020) A survey on semi-supervised learning. Mach Learn 109(2):373–440

    Article  MathSciNet  MATH  Google Scholar 

  174. Sayour MH, Kozhaya SE, Saab SS (2022) Autonomous robotic manipulation: real-time, deep-learning approach for grasping of unknown objects. J Robot

  175. Shen D, Huo N, Saab SS (2021) A probabilistically quantized learning control framework for networked linear systems. IEEE Trans Neural Netw Learn Syst

  176. Lolos K, Konstantinou I, Kantere V, Koziris N (2017) Elastic management of Cloud applications using adaptive reinforcement learning. In: 2017 IEEE international conference on Big Data, BigData 2017, Boston, MA, USA, December 11–14, 2017. IEEE Computer Society, pp 203–212

  177. Liu N, Li Z, Xu J, Xu Z, Lin S, Qiu Q, Tang J, Wang Y (2017) A hierarchical framework of Cloud resource allocation and power management using deep reinforcement learning. In: 37th IEEE international conference on distributed computing systems, ICDCS 2017, Atlanta, GA, USA, June 5–8, 2017. IEEE Computer Society, pp 372–382

  178. Saab SS, Jaafar RH (2021) A proportional-derivative-double derivative controller for robot manipulators. Int J Control 94(5):1273–1285

    Article  MathSciNet  MATH  Google Scholar 

  179. Saab SS, Shen D, Orabi M, Kors D, Jaafar RH (2021) Iterative learning control: practical implementation and automation. IEEE Trans Industr Electron 69(2):1858–1866

    Article  Google Scholar 

  180. Hammoud A, Otrok H, Mourad A, Dziong Z (2022) On demand fog federations for horizontal federated learning in IoV. IEEE Trans Netw Serv Manag

  181. Bitsakos C, Konstantinou I, Koziris N (2018) DERP: A deep reinforcement learning Cloud system for elastic resource provisioning. In: 2018 IEEE international conference on cloud computing technology and science, CloudCom 2018, Nicosia, Cyprus, December 10–13. IEEE Computer Society, pp 21–29

  182. Cheng M, Li J, Nazarian S (2018) Drl-Cloud: deep reinforcement learning-based resource provisioning and task scheduling for Cloud service providers. In: 23rd Asia and South Pacific design automation conference, ASP-DAC 2018, Jeju, Korea (South), January 22–25, 2018. IEEE, pp 129–134

  183. Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based dynamic task scheduling for energy-efficient cloud computing. Future Gener Comput Syst 108:361–371

    Article  Google Scholar 

  184. Sun G, Zhan T, Boateng GO, Ayepah-Mensah D, Liu G, Jiang W (2020) Revised reinforcement learning based on anchor graph hashing for autonomous cell activation in cloud-rans. Future Gener Comput Syst 104:60–73

    Article  Google Scholar 

  185. Tong Z, Chen H, Deng X, Li K, Li K (2020) A scheduling scheme in the cloud computing environment using deep Q-learning. Inf Sci 512:1170–1191

    Article  Google Scholar 

  186. Karthiban K, Raj JS (2020) An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm. Soft Comput 24(19):14933–14942

    Article  Google Scholar 

  187. Dong T, Xue F, Xiao C, Li J (2020) Task scheduling based on deep reinforcement learning in a cloud manufacturing environment. Concurr Comput Pract Exp 32(11)

  188. Lu H, Gu C, Luo F, Ding W, Liu X (2020) Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning. Future Gener Comput Syst 102:847–861

    Article  Google Scholar 

  189. Cao Z, Zhou P, Li R, Huang S, Wu DO (2020) Multiagent deep reinforcement learning for joint multichannel access and task offloading of mobile-edge computing in industry 4.0. IEEE Internet Things J 7(7):6201–6213

    Article  Google Scholar 

  190. Li M, Yu FR, Si P, Wu W, Zhang Y (2020) Resource optimization for delaytolerant data in blockchain-enabled iot with edge computing: a deep reinforcement learning approach. IEEE Internet Things J 7(10):9399–9412

    Article  Google Scholar 

  191. Shan N, Cui X, Gao Z (2020) “drl + fl”: an intelligent resource allocation model based on deep reinforcement learning for mobile edge computing. Comput Commun 160:14–24

    Article  Google Scholar 

  192. Wang J, Hu J, Min G, Zomaya AY, Georgalas N (2021) Fast adaptive task offloading in edge computing based on meta reinforcement learning. IEEE Trans Parallel Distrib Syst 32(1):242–253

    Article  Google Scholar 

  193. Guo W, Tian W, Ye Y, Xu L, Wu K (2021) Cloud resource scheduling with deep reinforcement learning and imitation learning. IEEE Internet Things J 8(5):3576–3586

    Article  Google Scholar 

  194. Kardani-Moghaddam S, Buyya R, Ramamohanarao K (2021) ADRL: a hybrid anomaly-aware deep reinforcement learning-based resource scaling in Clouds. IEEE Trans Parallel Distrib Syst 32(3):514–526

    Article  Google Scholar 

  195. Helwan A, Ma’aitah MKS, Uzelaltinbulat S, Altobel MZ, Darwish M (2021). Gaze prediction based on convolutional neural network. In: International conference on emerging technologies and intelligent systems. Springer, Cham, pp 215–224

  196. Gerges F, Shih F, Azar D (2021) Automated diagnosis of Acne and Rosacea using convolution neural networks. In: 2021 4th international conference on artificial intelligence and pattern recognition, pp 607–613

  197. Abbas N, Nasser Y, Shehab M, Sharafeddine S (2021) Attack-specific feature selection for anomaly detection in software-defined networks. In: 2021 3rd IEEE Middle East and North Africa COMMunications Conference (MENACOMM). IEEE, pp 142–146

  198. Tarhini A, Harfouche A, De Marco M (2022) Artificial intelligence-based digital transformation for sustainable societies: the prevailing effect of COVID-19 crises. Pac Asia J Assoc Inf Syst 14(2):1

    Google Scholar 

  199. Tarhini A, Danach K, Harfouche A (2020) Swarm intelligence-based hyper-heuristic for the vehicle routing problem with prioritized customers. Ann Oper Res 1–22

  200. Hammoud A, Otrok H, Mourad A, Dziong Z (2021) Stable federated fog formation: an evolutionary game theoretical approach. Futur Gener Comput Syst 124:21–32

    Article  Google Scholar 

  201. Sorkhoh I, Assi C, Ebrahimi D, Sharafeddine S (2021) Optimizing information freshness for MEC-enabled cooperative autonomous driving. IEEE Trans Intell Transp Syst

  202. Chamra A, Harmanani H (2020) A smart green house control and management system using IoT. In: 17th international conference on information technology–new generations (ITNG 2020). Springer, Cham, pp 641–646

  203. Kober J, Bagnell J, Andrew P (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32(11):1238–1274

    Article  Google Scholar 

  204. Manikandan N, Pravin A (2018) An efficient improved weighted Round Robin load balancing algorithm in cloud computing. Int J Eng Technol 7(3.1):110–117. https://doi.org/10.14419/ijet.v7i3.1.16810

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number RGP.1/142/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Dhiman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, S.S., Mishra, K., Roy, D.S. et al. State-of-the-Art Load Balancing Algorithms for Mist-Fog-Cloud Assisted Paradigm: A Review and Future Directions. Arch Computat Methods Eng 30, 2725–2760 (2023). https://doi.org/10.1007/s11831-023-09885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-023-09885-1

Navigation