Skip to main content
Log in

A Review of Three Common Concrete Multiaxial Strength Criteria from 2010 to 2020

  • Review article
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Strength criterion is fundamental to the study of the strength assessment and design of engineering structures under complex stress conditions. Through experiments with a range of concretes, a large number of multiaxial strength criteria have been proposed to date, with many new developments from 2010 to 2020.Even so, there has been minimal comparative analysis of the research results of different strength criteria. This paper presents a comparative analysis of the strength criteria of ordinary concrete, high-performance concrete and lightweight aggregate concrete from the past 10 years. First, the classic concrete strength criterion is summarized. Then, the research progress associated with the multiaxial strength criterion from 2010 to 2020 is reviewed. The accuracy of the concrete strength criterion proposed during this period is analysed and compared with the collected multiaxial strength experimental data of 777 groups of concrete using a statistical method. The analysis shows that the six-parameter strength criterion for ordinary concrete proposed by Ding-Wu, the three-parameter strength criterion based on the Willam-Warnke criterion for high-performance concrete proposed by He-Song and the six-parameter strength criterion for lightweight aggregate concrete proposed by Liu-Song are in good agreement with the experimental data collected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen WF (1982) Plasticity in reinforced concrete. McGraw-Hill, New York

    Google Scholar 

  2. Welche MO (1900) Umstande bedingen die Elastizitatsgrenze und den bruch eines materials. Z Ver Dtsch Ing 44:1524–1530

    Google Scholar 

  3. Seow PEC, Swaddiwudhipong S (2005) Failure surface for concrete under multiaxial load-a unified approach. Mater Civ Eng 17(2):219–228

    Article  Google Scholar 

  4. Bresler B, Pister KS (1958) Strength of concrete under combined stresses. J Proc 55(9):321–345

    Google Scholar 

  5. William KJ, Warnke EP (1975) Constitutive models for the triaxial behavior of concrete. Proc Int Assoc Bridge Struct Eng, Bergamo, Italy, Zurich 19:1–30

    Google Scholar 

  6. Ottosen NS (1977) A failure criterion for concrete. J Eng Mech 103(4):527–535

    Google Scholar 

  7. Hesieh SS, Ting EC, Chen WF (1979) An elasticity-fracture model for concrete. In: Johnson CP (ed) Proceeding of 3rd Engineering Mechanics Division, Special Conference. ASCE, Austin, pp 437–440

    Google Scholar 

  8. Kotsovos MD, Lowe PG (1980) Discussion: a mathematical description of the strength properties of concrete under generalized stress. Mag Concr Res 32(112):186–187

    Article  Google Scholar 

  9. Podgorski J (1984) General failure criterion for isotropic media. J Eng Mech 111(2):188–201

    Google Scholar 

  10. Wang C-Z, Guo Z-H, Zhang X-Q (1987) Experimental investigation of biaxial and triaxial compressive concrete strength. Mater J. https://doi.org/10.14359/1808

    Article  Google Scholar 

  11. Jiang J-J (1994) Nonliner finite element analysis of reinforced concrete structures. Shanxi Science and Technology Publishing House, Xi an (in Chinese)

    Google Scholar 

  12. Yupu S, Guofan Z, Fang P et al (1996) General failure criterion for different concrete materials under multiaxial stresses. Chin Civil Eng J 29(1):25–32 (in Chinese)

    Google Scholar 

  13. Yu MH (1983) Twin shear stress yield criterion. Int J Mech Sci 25(1):71–74

    Article  Google Scholar 

  14. Yu MH, He LN, Song LY (1985) Twin shear stress theory and its generalization. Sci China, Ser A 28(11):1174–1183

    Google Scholar 

  15. Maohong Yu, Fengyu L (1988) Twin shear stress three parameter criterion and its corner model. Chin Civil Eng J 21(3):90–95 (in Chinese)

    Google Scholar 

  16. Yu MH, Liu FY, Li Y et al (1989) Twin shear stress five-parameter criterion and its smooth ridge model. Int Acad Pub 1:244–248

    Google Scholar 

  17. Maohong Yu, Fengyu L (1990) Smooth ridge model of generalized twin shear stress criterion. Acta Mech Sin 22(2):213–216 (in Chinese)

    Google Scholar 

  18. Maohong Yu, Fengyu L, Feng L et al (1990) A new general strength theory. Chin Civil Eng J 23(1):34–40 (in Chinese)

    Google Scholar 

  19. Maohong Yu (1989) A new model of material yield and damage under complex stress state and its series theory. Chinese J Theor Appl Mech S1:42–49

    Google Scholar 

  20. Yu MH, Zhao J, Guan LW (1998) Strength theory for rock and concrete: history, present situation and development. Prog Nat Sci 8(4):394–402

    Google Scholar 

  21. Yu MH (2002) Advances in strength theories for materials under complex stress state in the 20th century. Appl Mech Rev 55(3):169–218

    Article  Google Scholar 

  22. Yu M-H, Kolupaev VA, Li Y-M, Li J-C (2011) Advances in unified strength theory and its generalization. Procedia Eng. 10:2508–2513

    Article  Google Scholar 

  23. Ding FX, Yu ZW (2006) Strength criterion for plain concrete under multiaxial stress based on damage Poisson’s ratio. Acta Mech Solida Sin 19(4):307–315

    Article  Google Scholar 

  24. Zhang J, Zhang ZX, Huang CP (2010) Representation based classification of strength theories of concrete. Adv Mater Res 168–170:74–77

    Article  Google Scholar 

  25. Liu GJ (2014) Research status of concrete strength theory based on stress and strain. Appl Mech Mater 670–671:445–448

    Google Scholar 

  26. Muthukumar G, Kumar M (2014) Failure criteria of concrete- a review. Comput Concrete 14(5):503–526

    Article  Google Scholar 

  27. Qin YF, Tian B, Xu G, Lu XC (2012) Review of strength and failure criteria for concrete after freeze-thaw damage. Appl Mech Mater 253–255:456–461

    Article  Google Scholar 

  28. Zhu H, Hu Y, Ma R, Wang J, Li Q (2021) Concrete thermal failure criteria, test method, and mechanism: a review. Constr Build Mater 283:122762

    Article  Google Scholar 

  29. Ding F, Wu X, Xiang P, Yu Z, Gong C (2020) Research progress in strength theory of concrete and isotropic rock. Eng Mech 37(02):1–15 (in Chinese)

    Article  Google Scholar 

  30. Muhd Norhasri MS, Hamidah MS, Mohd Fadzil A (2017) Applications of using nano material in concrete: a review. Constr Build Mater 133:91–97

    Article  Google Scholar 

  31. Zhao ZQ, Sun RJ, Xin GF, Wei SS, Huang DW (2013) A review: application of nanomaterials in concrete. Appl Mech Mater 405–408:2881–2884

    Article  Google Scholar 

  32. Yupu S, Guofan Z, Fang P et al (1993) Strength of lightweight concrete under triaxial compression. J Hydraul Eng 6:10–16 (in Chinese)

    Google Scholar 

  33. Yu Z, Sun X, Li F (2019) Experimental analysis and failure criterion of plain concrete subjected to biaxial loading under fixed lateral loading. Adv Civil Eng 2019:1–12

    Google Scholar 

  34. Yanxia Ye, Zhiyin Z, Yue L, Chunmiao Z (2019) Lightweight aggregate concrete strength criterion based on warhead type yielding. Eng Mech 36(01):138–145 (in Chinese)

    Google Scholar 

  35. Shang HS, Song YP (2013) Triaxial compressive strength of air-entrained concrete after freeze-thaw cycles. Cold Reg Sci Technol 90–91:33–37

    Article  Google Scholar 

  36. Zhou W, Feng P, Lin H (2020) Constitutive relations of coral aggregate concrete under uniaxial and triaxial compression. Constr Build Mater 251:118957

    Article  Google Scholar 

  37. Shang HS (2013) Triaxial T-C-C behavior of air-entrained concrete after freeze-thaw cycles. Cold Reg Sci Technol 89:1–6

    Article  Google Scholar 

  38. Shi L, Wang L, Song Y, Shen L (2014) Dynamic multiaxial strength and failure criterion of dam concrete. Constr Build Mater 66:181–191

    Article  Google Scholar 

  39. IWHR (1982) Chinese translation and collection of strength and failure of concrete. China Hydraulic Press, Beijing (in Chinese)

    Google Scholar 

  40. Ma G, Zeng W (1990) Using a new three-parameter criterion to calculate three-dimensional stress in concrete. The second academic symposium on the basic theory and application of concrete structures, Vol. 1, pp .34–40). (in Chinese)

  41. Mills LL, Zimmerman RM (1970) Compressive strength of plain concrete under multiaxial loading conditions. ACI J Proc 67(10):802–807

    Google Scholar 

  42. Rukhaiyar S, Sajwan G, Samadhiya NK (2017) Strength behavior of plain cement concrete subjected to true triaxial compression. NRC Res Press 45(3):179–196

    Google Scholar 

  43. Chuanzhi W, Zhenhai G, Xiuqin Z (1987) Strength test of concrete under biaxial and triaxial compression. Chin Civil Eng J 1:15–27 (in Chinese)

    Google Scholar 

  44. Shang H, Ji G (2014) Mechanical behaviour of different types of concrete under multiaxial compression. Mag Concr Res 66(17):870–876

    Article  Google Scholar 

  45. Y. Song (2009) The multiaxial strength of large aggregate concrete after freeze -thaw cycles and failure criteria in octahedral stress space, Final Report to NNSFC (in Chinese)

  46. Lee S-K, Song Y-C, Han S-H (2004) Biaxial behavior of plain concrete of nuclear containment building. Nucl Eng Des 227(2):143–153

    Article  Google Scholar 

  47. Hampel T, Speck K, Scheerer S, Ritter R, Curbach M (2009) High-performance concrete under biaxial and triaxial loads. J Eng Mech 135(11):1274–1280

    Google Scholar 

  48. Zhou J, Pan J, Zhang L, Zhao J, Li Z (2020) Experimental study on mechanical behavior of high-strength high-performance concrete under biaxial loading. Constr Build Mater 258:119681

    Article  Google Scholar 

  49. Jiajia Z, Jinlong P, Shaoke Y, Jun Z, Zhe Z (2018) Experimental study on triaxial tension and compression properties of high-strength and high-performance concrete. Eng Mech 35(04):144–150 (in Chinese)

    Google Scholar 

  50. Licheng W, Yupu S (2005) A four-parameter multiaxial strength criterion for lightweight aggregate concrete. Chin Civil Eng J 7:27–33 (in Chinese)

    Google Scholar 

  51. Guo Z, Zhang X, Zhang C, Wang R (1982) Experimental study on stress-strain curve of concrete. J Build Struct 01:1–12 (in Chinese)

    Google Scholar 

  52. Zhao G, Ren M, Qiu X, Xue Q (2018) The unified strength theory for plastic limit load analysis of vertical shaft lining. Adv Civil Eng 2018:1–6

    Article  Google Scholar 

  53. Zhang N, Guo H, Khan T, Zhu E, Shi S, Wu Q, Tian Y, Xie X, de Sciarra FM (2018) Elastoplastic analysis of two-layered circular lining based on the unified strength theory. Math Prob Eng 2018:1–10

    MathSciNet  MATH  Google Scholar 

  54. Liao Z, Tang D, Li Z, Xue Y, Shao L (2019) Study on explosion resistance performance experiment and damage assessment model of high-strength reinforcement concrete beams. Int J Impact Eng 133:103362

    Article  Google Scholar 

  55. Qian X, Li X (2019) Multi-axial strength and safety index of concrete arch Dam. J Hohai Univ (Natural Science Edition) 03:230–237 (in Chinese)

    Google Scholar 

  56. Qian X, He X, Jiao C, Zhou J (2015) Safety coefficient of multiaxial strength of concrete and its Application. J Hohai Univ (Natural Science Edition) 02:121–126 (in Chinese)

    Google Scholar 

  57. Liu GJ, Wei ZL (2013) Research on concrete strength theory based on strain space. Appl Mech Mater 423–426:1068–1071

    Google Scholar 

  58. Zhou G, Shi J, Yu M, Zhang Y, Li X, Zhao Y (2019) Strength without size effect and formula of strength for concrete and natural marble. Materials 12(17):2685

    Article  Google Scholar 

  59. Xiao J, Zhang Q, Xia X (2013) Preliminary study on concrete strength based on Mori-Tanaka method. Concrete 2013(09):18–21 (in Chinese)

    Google Scholar 

  60. Yu Z, Huang Q, Xie X, Xiao N (2018) Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress. Constr Build Mater 179:198–206

    Article  Google Scholar 

  61. Ma Q, Guo R, Zhao Z, Lin Z, He K (2015) Mechanical properties of concrete at high temperature—a review. Constr Build Mater 93:371–383

    Article  Google Scholar 

  62. Xiao J, König G (2004) Study on concrete at high temperature in China—an overview. Fire Saf J 39(1):89–103

    Article  Google Scholar 

  63. Liu X, Yang Z (2016) Failure mechanism criterion for multiaxial strength of concrete after exposure to normal and high temperatures. Constr Build Mater 125:105–118

    Article  Google Scholar 

  64. Liu X, Yang Z (2017) Evaluation of several multiaxial failure criteria for concrete after freeze-thaw (F-T) cycles. Constr Build Mater 142:233–247

    Article  Google Scholar 

  65. Chen Q, Zhang Y, Zhao T, Wang Z, Wang Z (2021) Mesoscale modelling of concretes subjected to triaxial loadings: mechanical properties and fracture behaviour. Materials 14:1099

    Article  Google Scholar 

  66. Tang XW, Zhang CH (2009) Study on concrete in macro-and meso-scale mechanical properties based on homogenization theory. Chin J Comp Mech 26:876–881

    Google Scholar 

  67. Zhu WC, Tang CA, Wang SY (2005) Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete. Struct Eng Mech 19:519–533

    Article  Google Scholar 

  68. Xiao J, Li W, Liu Q (2011) Meso-level numerical simulation on mechanical properties of modeled recycled concrete under uniaxial compression. J Tongji Univ 39:791–797 (in Chinese)

    Google Scholar 

  69. Zhang B (1998) Relationship between pore structure and mechanical properties of ordinary concrete under bending fatigue. Cem Concr Res 28:699–711

    Article  Google Scholar 

  70. Rong C, Shi Q, Zhang T, Zhao H (2018) New failure criterion models for concrete under multiaxial stress in compression. Constr Build Mater 161:432–441

    Article  Google Scholar 

  71. Rong C, Shi Q (2017) Axial-strength model for FRP-confined concrete based on the improved twin shear strength theory. Compos Struct 202:102–110

    Article  Google Scholar 

  72. Ting Z, Ditao N, Chong R (2019) GFRP-confined coral aggregate concrete cylinders: the experimental and theoretical analysis. Elsevier 218:206–213

    Google Scholar 

  73. Ding F, Wu X, Xiang P, Yu Z (2021) Criteria for damage ratio strength of multiple types of concrete and isotropic rock. China Civil Eng J 54(02):50–64 (in Chinese)

    Google Scholar 

  74. Xiangdong Q, Hongdao J (2008) Definition and application of multi-axial strength safety factor. J Build Sci Eng 01:38–42 (in Chinese)

    Google Scholar 

  75. Zhenhai G (2013) Principles of reinforced concrete. Tsinghua University Press, Beijing (in Chinese)

    Google Scholar 

  76. Sun J (2011) Research status and prospects on the ultra high performance concrete. Adv Mater Res 1068:1506–1508

    Google Scholar 

  77. Ansari F, Li Q (1998) High-strength concrete subjected to triaxial compression. ACI Mater J 95(6):747–755

    Google Scholar 

  78. Tan P, Zhao YM, Meng QH (2014) Test and application of high performance concrete. Adv Mater Res 908:30–33

    Article  Google Scholar 

  79. Wu FH, Lv YL, Shou QY (2013) The application of high strength/performance concrete in chinese construction. Appl Mech Mater 357–360:1008–1011

    Google Scholar 

  80. He Z, Song Y (2008) Failure mode and constitutive model of plain high-strength high-performance concrete under biaxial compression after exposure to high temperatures. Acta Mech Solida Sin 21(2):149–159

    Article  Google Scholar 

  81. Folino P, Etse G, Will A (2009) Performance dependent failure criterion for normal- and high-strength concretes. J Eng Mech 135(12):1393–1409

    Google Scholar 

  82. Hatami B, Ramezanianpour AM, Daryan AS (2018) Investigation on the effect of shrinkage reducing admixtures on shrinkage and durability of high-performance concrete. J Test Eval 46(1):141–150

    Google Scholar 

  83. Beushausen H, Dittmer T (2015) The influence of aggregate type on the strength and elastic modulus of high strength concrete. Constr Build Mater 74:132–139. https://doi.org/10.1016/j.conbuildmat.2014.08.055

    Article  Google Scholar 

  84. Metin H, Serhat G (2005) The effects of low temperature curing on the compressive strength of ordinary and high performance concrete. Constr Build Mater 19(1):49–53

    Article  Google Scholar 

  85. Zhen-jun He, Yu-pu S (2010) Multiaxial tensile-compressive strengths and failure criterion of plain high-performance concrete before and after high temperatures. Constr Build Mater 24(4):498–504

    Article  Google Scholar 

  86. Zhenjun He, Yupu S (2010) Multiaxial tension and compression properties of high-strength and high-performance concrete. Eng Mech 27(10):190–195 (in Chinese)

    Google Scholar 

  87. Pierre K, FrancËois-Dominique M, Daniel Q (2000) Spalling and pore pressure in HPC at high temperatures. Cem Concr Res 30(12):1915–1927

    Article  Google Scholar 

  88. Gaifei P, Wenwu Y, Jie Z (2006) Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures. Cem Concr Res 36(4):723–727

    Article  Google Scholar 

  89. Chan SYN, Peng G, Chan JKW (1996) Comparison between high strength concrete and normal strength concrete subjected to high temperature. Mater Struct 29(10):616–619

    Article  Google Scholar 

  90. He Z, Song Y (2010) Triaxial strength and failure criterion of plain high-strength and high-performance concrete before and after high temperatures. Cem Concr Res 40(1):171–178

    Article  Google Scholar 

  91. Zhou JJ, Pan JL, Leung CKY, Li ZJ (2014) Experimental study on mechanical behavior of high performance concrete under multi-axial compressive stress. Sci China 57(12):2514–2522

    Article  Google Scholar 

  92. Hussein A, Marzouk H (2000) Behavior of high strength concrete under bixial stresses. ACI Mater J 97:27–36

    Google Scholar 

  93. Wang Y-Z, Wang Y-B, Zhao Y-Z, Li G-Q, Lyu Y-F, Li H (2020) Experimental study on ultra-high performance concrete under triaxial compression. Constr Build Mater 263:120225

    Article  Google Scholar 

  94. Zhou J, Pan J, Ma H, Zhao J, Li Z (2020) Behavior of high-performance concrete under multiaxial tensile-compressive loading. Constr Build Mater 260:119887

    Article  Google Scholar 

  95. Thienel K-C, Haller T, Beuntner N (2020) Lightweight concrete—from basics to innovations. Materials 13(5):1120

    Article  Google Scholar 

  96. Ruebner K, Schnell A, Haamkens F (2012) Lightweight concrete with tailor-made expanded aggregates. Chem Ing Tec 84(10):1792–1797

    Google Scholar 

  97. Nie Lu, Zhang Y (2011) Study on the application of lightweight aggregate ceramsite concrete in building. Appl Mech Mater 71–78:573–576

    Article  Google Scholar 

  98. Haug AK, Fjeld S (1996) A floating concrete platform hull made of lightweight aggregate concrete. Eng Struct 18(11):831–836

    Article  Google Scholar 

  99. Tachibana D (1990) Qualities of high-strength lightweight concrete used for construction of arctic offshore platform. J Offshore Mech Arct Eng 112(1):27

    Article  Google Scholar 

  100. Abd Elrahman M (2019) Effect of different expanded aggregates on the properties of lightweight concrete. Magaz Concr Res 71(2):95–107

    Article  Google Scholar 

  101. Karthika RB, Vidyapriya V, Nandhini Sri KV, Merlin Grace Beaula K, Harini R, Sriram M (2021) Experimental study on lightweight concrete using pumice aggregate. Mater Today Proc 43:1606–1613

    Article  Google Scholar 

  102. Kockal NU, Ozturan T (2011) Durability of lightweight concretes with lightweight fly ash aggregates. Constr Build Mater 25(3):1430–1438

    Article  Google Scholar 

  103. Liu X, Chia KS, Zhang M-H (2010) Development of lightweight concrete with high resistance to water and chloride-ion penetration. Cem Concr Compos 32(10):757–766

    Article  Google Scholar 

  104. Ren Y, Yu Z, Huang Q, Ren Z (2018) Constitutive model and failure criterions for lightweight aggregate concrete: a true triaxial experimental test. Constr Build Mater 171:759–769

    Article  Google Scholar 

  105. Liu H, Song Y (2010) Experimental study of lightweight aggregate concrete under multiaxial stresses. J Zhejiang Univ-Sci A 11(8):545–554

    Article  Google Scholar 

  106. Wang WZ, Chen YJ, Chen FY (2011) An egg shaped failure criterion for lightweight aggregate concrete. Adv Mater Res 250–253:2085–2088

    Google Scholar 

  107. Wanzhen W (2014) Failure surface model of lightweight aggregate concrete. J Build Mater 17(01):60–65 (in Chinese)

    Google Scholar 

  108. Licheng W, Yupu S (2005) A four-parameter multi-axial strength criterion for lightweight aggregate concrete. Chin Civil Eng J 38(7):27–33 (in Chinese)

    Google Scholar 

  109. Licheng W, Kiyoshi H (2006) Multi-axial strength criterion for lightweight aggregate concrete based on the unified strength theory. Eng Mech 23(5):125–131 (in Chinese)

    Google Scholar 

  110. Ding FX, Wu X, Xiang P, Yu ZW (2021) New damage ratio strength criterion for concrete and lightweight aggregate concrete. ACI Struct J 118(6):165–178

    Google Scholar 

Download references

Funding

National Natural Science Foundation of China (Grant No. 52179128); National Natural Science Foundation of China (Grant No. 51579085); National Key R&D Program of China (2018YFC1508603).

Author information

Authors and Affiliations

Authors

Contributions

XC: Conceptualization, Methodology, Calculation and analysis, Writing-original draft, Writing-editing, Data collection. DZ: Conceptualization, Resources, Supervision, Writing-review. XW: Writing-review, Data collection, Calculation and analysis. CL: Form and word-editing, Calculation and analysis.

Corresponding author

Correspondence to Dongjian Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 The strength of different normal–strength concrete (NSC) under different stress states

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

25.6

 − 10.5

 − 24

 − 95.8

23.03

0

0

 − 23.03

[35,36,37]

 − 11.8

 − 52.7

 − 105.4

[41, 42]

 − 5.79

 − 5.79

 − 53.1

 

 − 10

 − 69.3

 − 92.4

 

 − 5.79

 − 11.59

 − 57.93

 

1.5

 − 1.5

 − 6

 

 − 5.79

 − 17.38

 − 53.1

 

1.4

 − 2.9

 − 5.7

 

 − 5.79

 − 23.17

 − 65.17

 

1.4

 − 4.3

 − 5.7

 

 − 5.79

 − 28.97

 − 67.59

 

0.9

0

 − 18.2

 

 − 5.79

 − 40.55

 − 60.34

 

1.4

0

 − 14.5

 

 − 5.79

 − 47.86

 − 56.83

 

1.9

0

 − 6.3

 

 − 2.9

 − 50.69

 − 50.69

 

2.4

0

 − 4.9

 

 − 8.69

 − 14.48

 − 72.41

 

0

 − 7.7

 − 31

 

 − 8.69

 − 8.69

 − 62.76

 

0

 − 15.9

 − 31.7

 

 − 8.69

 − 67.59

 − 77.24

 

0

 − 22.5

 − 30

 

 − 8.69

 − 20.28

 − 79.66

 

0

 − 29.1

 − 29.1

 

 − 8.69

 − 31.86

 − 77.24

 

 − 5.3

 − 68.6

 − 68.6

 

 − 8.69

 − 37.66

 − 82.07

 

 − 10

 − 85

 − 85

 

 − 8.69

 − 55.72

 − 81.52

 

 − 16.7

 − 106.4

 − 106.4

 

 − 8.69

 − 60.83

 − 82.07

 

 − 30.8

 − 149.8

 − 149.8

 

 − 8.69

 − 72.41

 − 72.41

 

0.5

 − 12.4

 − 12.4

 

 − 2.9

 − 2.9

 − 41.03

 

1

 − 8.7

 − 8.7

 

 − 2.9

 − 8.69

 − 53.1

 

1.7

 − 6.9

 − 6.9

 

 − 2.9

 − 24.14

 − 57.93

 

2.7

0

0

 

 − 2.9

 − 20.28

 − 55.52

 

0

0

 − 25.6

 

 − 2.9

 − 31.86

 − 57.93

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

19.29

    

 − 2.9

 − 37.24

 − 55.52

[38]

 − 0.31

 − 7.73

 − 30.9

 

 − 2.9

 − 49.31

 − 57.93

 

 − 0.34

 − 17.01

 − 34.02

 

 − 2.9

 − 53.1

 − 53.1

 

 − 0.33

 − 24.94

 − 33.25

 

 − 2.9

 − 2.9

 − 43.45

 

0.66

 − 1.65

 − 6.61

 

 − 5.79

 − 63.79

 − 65.17

 

0.6

 − 2.99

 − 5.97

    
 

0.59

 − 4.4

 − 5.87

26.93

0

0

 − 26.93

 

0

 − 6.39

 − 25.56

[41]

 − 0.62

 − 50.69

 − 50.69

 

0

 − 13.44

 − 26.87

 

 − 0.62

 − 45.86

 − 45.86

 

0

 − 19.73

 − 26.3

 

 − 1.24

 − 49.66

 − 53.1

 

0.49

0

 − 9.8

 

 − 1.24

 − 50.69

 − 50.69

 

0.68

0

 − 6.8

 

 − 2.9

 − 62.76

 − 62.76

 

1.07

0

 − 4.28

 

 − 1.45

 − 1.45

 − 41.52

 

1.31

0

 − 2.62

 

 − 2.9

 − 2.9

 − 41.76

 

0.53

 − 5.33

 − 5.33

 

 − 4.83

 − 5.24

 − 56.28

 

0.46

 − 9.17

 − 9.17

 

 − 7.24

 − 7.24

 − 71.24

 

0

 − 70.3

 − 70.3

 

 − 1.45

 − 21.72

 − 58.9

 

0

 − 63.84

 − 63.84

 

 − 2.9

 − 36.21

 − 66.14

 

0

 − 3.75

 − 41.42

 

 − 2.9

 − 28.97

 − 68.83

 

 − 7.6

 − 27.018

 − 114.76

    

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

 

 − 7.6

 − 28.842

 − 116.28

36.1

0

0

 − 36.1

 

 − 7.6

 − 53.2

 − 125.78

 [41]

 − 0.62

 − 47.1

 − 48.28

 

 − 7.6

 − 56.24

 − 131.48

 

 − 0.62

 − 51.66

 − 51.1

 

 − 7.6

 − 80.56

 − 132.24

 

 − 1.24

 − 60.34

 − 61.31

 

 − 7.6

 − 85.12

 − 140.98

 

 − 1.24

 − 50.69

 − 51.24

 

 − 7.6

 − 113.62

 − 154.28

 

 − 2.9

 − 67.59

 − 68.83

 

 − 7.6

 − 142.12

 − 142.12

 

 − 1.45

 − 1.45

 − 54.55

 

 − 7.6

 − 135.28

 − 135.28

 

 − 2.9

 − 2.9

 − 59.38

 

 − 15.2

 − 30.134

 − 144.78

 

 − 1.45

 − 21.72

 − 63.24

 

 − 15.2

 − 34.276

 − 153.9

 

 − 2.9

 − 28.97

 − 72.9

 

 − 15.2

 − 61.56

 − 164.92

 

 − 4.83

 − 5.24

 − 64

 

 − 15.2

 − 70.68

 − 175.56

 

 − 4.83

 − 4.83

 − 73.1

 

 − 15.2

 − 93.1

 − 167.2

 

 − 1.45

 − 26.55

 − 66.41

 

 − 15.2

 − 102.6

 − 180.88

 

 − 2.9

 − 28.97

 − 68.83

 

 − 15.2

 − 124.26

 − 178.98

    
 

 − 15.2

 − 156.94

 − 156.94

9.37

0

0

 − 9.37

 

 − 22.8

 − 30.43

 − 164.16

[10]

 − 3.9

 − 3.87

 − 37

 

 − 22.8

 − 30.97

 − 170.24

 

 − 2.98

 − 3.87

 − 29.79

 

 − 22.8

 − 35.87

 − 171

 

 − 4.39

 − 8.51

 − 45.29

 

 − 22.8

 − 35.56

 − 179.36

 

 − 5.7

 − 14.26

 − 46.61

 

 − 22.8

 − 68.78

 − 188.86

 

 − 4.55

 − 18.82

 − 46.13

 

 − 22.8

 − 106.78

 − 197.98

 

 − 4.23

 − 17.14

 − 43.25

 

 − 22.8

 − 102.22

 − 201.78

 

 − 5.05

 − 26.57

 − 52.86

 

 − 22.8

 − 102.22

 − 210.52

 

 − 15.69

 − 15.22

 − 74.97

 

 − 22.8

 − 136.04

 − 210.52

 

 − 12.42

 − 11.54

 − 58.15

 

 − 22.8

 − 143.64

 − 207.48

 

 − 14.79

 − 14.1

 − 67.28

 

 − 22.8

 − 144.02

 − 188.1

 

 − 29.03

 − 28.65

 − 96.11

 

 − 22.8

 − 181.26

 − 181.26

    

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

 

 − 22.8

 − 177.84

 − 177.84

10.74

0

0

 − 10.74

 

 − 22.8

 − 175.18

 − 175.18

[10]

 − 5.05

 − 9.46

 − 45.17

 

0.82

 − 4.1

 − 4.1

 

 − 4.88

 − 14.26

 − 49.02

 

0.94

 − 3.14

 − 3.14

 

 − 4.72

 − 23.85

 − 47.57

 

 − 0.29

 − 29.41

 − 29.41

 

 − 4.72

 − 36

 − 48.05

 

 − 2.4

 − 47.93

 − 47.93

 

 − 4.23

 − 32.64

 − 43.25

 

0

 − 25.9

 − 25.9

 

 − 3.9

 − 34.08

 − 38.44

 

1.71

0

0

 

 − 3.74

 − 37.12

 − 38.44

 

 − 0.25

 − 2.52

 − 25.17

 

 − 18.47

 − 27.37

 − 91.3

 

 − 1.83

 − 1.83

 − 36.69

 

 − 17.49

 − 25.93

 − 86.02

 

 − 0.21

 − 0.21

 − 20.82

 

 − 18.31

 − 36.48

 − 91.3

 

0

0

 − 19.29

 

 − 17.82

 − 43.03

 − 84.58

28.88

   

34.2

   

[39]

 − 12.92

 − 64.2

 − 128.4

[44, 64]

1.2

0

 − 23.56

 

 − 10.9

 − 81.6

 − 108.8

 

1.98

0

 − 12.97

 

1.43

 − 1.43

 − 5.83

 

2.3

0

 − 9.31

 

1.37

 − 2.74

 − 5.48

 

3.14

0

0

 

1.32

 − 3.96

 − 5.28

 

0

 − 10.75

 − 43.01

 

0

 − 8.78

 − 35.12

 

0

 − 22.75

 − 45.49

 

0

 − 27.24

 − 36.32

 

0

 − 31.88

 − 42.5

 

0.95

0

 − 19.04

 

0

 − 40.7

 − 40.7

 

1.41

0

 − 14.06

 

 − 13.56

 − 34.25

 − 134.66

 

1.85

0

 − 7.23

 

 − 14.33

 − 72.05

 − 141.82

 

2.03

0

 − 4.06

 

 − 12.56

 − 93.15

 − 126.78

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

 

 − 9.84

 − 98.6

 − 98.2

23.32

   
 

1.67

 − 6.68

 − 6.68

[45]

0.87

 − 2.24

 − 4.48

 

1.09

 − 10.8

 − 10.8

 

0.82

 − 3.56

 − 4.58

 

0.58

 − 11.9

 − 11.9

 

0

 − 7.15

 − 28.6

 

0

 − 33.3

 − 33.3

 

0

 − 15.44

 − 30.87

 

2.34

0

0

 

0

 − 22.29

 − 29.72

 

 − 11.26

 − 28.15

 − 112.6

 

0.72

0

 − 14.34

 

0

0

 − 28.88

 

1.02

0

 − 10.26

38

    

1.41

0

 − 5.62

[39]

0

0

 − 38

 

1.61

0

 − 3.22

 

0

 − 8.25

 − 44.84

 

0

 − 27.98

 − 27.98

 

0

 − 2.91

 − 44.46

 

1.85

0

0

 

0

 − 13.26

 − 56.62

 

0.87

 − 4.08

 − 4.08

 

0

 − 14.71

 − 61.56

 

0.59

 − 5.8

 − 5.8

 

0

 − 26.14

 − 57.76

 

0.28

 − 6.9

 − 6.9

 

0

 − 38

 − 61.56

 

0.89

 − 1.13

 − 4.86

 

0

 − 36.06

 − 68.78

 

 − 22.8

 − 173.28

 − 173.28

 

0

 − 51.3

 − 69.16

 

 − 22.8

 − 22.8

 − 151.62

 

0

 − 58.14

 − 70.68

 

 − 30.4

 − 38.38

 − 190.38

 

 − 30.4

 − 189.24

 − 188.86

 

 − 30.4

 − 74.48

 − 207.1

 

 − 30.4

 − 39.52

 − 199.5

 

 − 30.4

 − 114.38

 − 213.56

 

 − 30.4

 − 77.9

 − 225.34

 

 − 30.4

 − 154.66

 − 227.62

 

 − 38

 − 41.04

 − 206.34

 

 − 30.4

 − 193.04

 − 192.28

 

 − 38

 − 121.98

 − 237.5

 

0

0

 − 23.32

 

 − 38

 − 169.86

 − 247

    

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

24.51

   

22.35

0

0

 − 22.35

[38]

2.32

0

0

[70]

0

 − 27.41

 − 27.41

 

0

0

 − 24.51

 

 − 325.34

 − 325.34

 − 325.34

 

0

 − 8.69

 − 34.74

 

 − 5.45

 − 5.57

 − 52.83

 

0

 − 18.61

 − 37.22

 

 − 7.15

 − 17.53

 − 72.87

 

0

 − 26.84

 − 35.78

 

 − 7.82

 − 21.38

 − 71.77

 

0

 − 33.52

 − 33.52

 

 − 6.81

 − 36.15

 − 69.82

 

0.67

0

 − 13.4

 

 − 6.08

 − 45.77

 − 61.65

 

0.92

0

 − 9.2

 

 − 5.73

 − 56.96

 − 57.23

 

1.45

0

 − 5.8

 

 − 37.73

 − 38.29

 − 150.36

 

1.81

0

 − 3.62

 

 − 45.47

 − 55.89

 − 188.01

 

 − 2.11

 − 2.11

 − 42.14

 

 − 46.57

 − 135.71

 − 187.28

 

 − 0.28

 − 0.28

 − 27.62

 

 − 41.73

 − 163.47

 − 166.59

 

 − 0.31

 − 3.1

 − 31.02

 

 − 25.05

 − 83.35

 − 83.96

 

 − 0.34

 − 8.55

 − 34.19

39.0

   
 

 − 0.36

 − 18.06

 − 36.12

 [46]

0

0

 − 39

 

 − 0.38

 − 28.85

 − 38.46

 

0

 − 9.75

 − 48.75

 

 − 0.35

 − 35.45

 − 35.45

 

0

 − 24.96

 − 49.92

 

 − 2.7

 − 53.93

 − 53.93

 

0

 − 45.63

 − 45.63

 

0.92

 − 2.31

 − 9.24

 

1.57

0

 − 31.43

 

0.87

 − 4.36

 − 8.71

 

2.29

0

 − 22.93

 

0.69

 − 5.18

 − 6.9

 

2.96

0

 − 14.78

 

0.61

 − 6.13

 − 6.13

 

2.98

0

 − 9.95

 

0.51

 − 10.27

 − 10.27

 

4.29

0

0

 

1.19

 − 5.96

 − 5.96

 

4.56

0.91

0

 

1.46

 − 4.85

 − 4.85

 

4.1

2.05

0

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

31.7

    

3.16

3.16

0

 [40]

 − 5

 − 5

 − 51

30.03

  
 

 − 10

 − 10

 − 69.3

 [46]

0

0

 − 30.03

 

 − 15

 − 15

 − 86.9

 

0

 − 7.63

 − 38.14

 

 − 20

 − 20

 − 106.3

 

0

 − 19.97

 − 39.94

 

 − 25

 − 25

 − 123.2

 

0

 − 34.95

 − 34.95

 

 − 30

 − 30

 − 147.2

 

1.23

0

 − 24.62

42.7

    

1.43

0

 − 14.32

 [40]

 − 10

 − 10

 − 7.64

 

1.9

0

 − 9.49

 

 − 15

 − 15

 − 103

 

2.07

0

 − 6.91

 

 − 20

 − 20

 − 113.4

 

2.88

0

0

 

 − 30

 − 30

 − 144

 

3

0.65

0

48.6

    

3.12

1.56

0

 [40]

 − 5

 − 5

 − 97.5

 

2.88

2.88

0

 

 − 10

 − 10

 − 119.4

21.14

   
 

 − 15

 − 15

 − 148.3

[33]

0

0

 − 21.14

 

 − 20

 − 20

 − 169.4

 

1.93

0

0

 

 − 5

 − 15

 − 116

 

1.66

0

 − 26.78

 

 − 5

 − 20

 − 126.8

 

1.34

0

 − 27.73

 

 − 10

 − 20

 − 136.5

 

1.22

0

 − 29.82

 

 − 10

 − 25

 − 146.5

 

0.93

0

 − 27.15

 

 − 10

 − 30

 − 163.3

 

0.83

0

 − 30.23

 

 − 15

 − 25

 − 171

45.45[33]

  

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

20[32]

    

0

0

 − 45.45

 

0

0

 − 20

 

2.67

0

0

 

 − 5.2

 − 5.2

 − 52.43

 

2.33

0

 − 50.13

 

 − 7.36

 − 18.4

 − 73.6

 

2.2

0

 − 58.65

 

 − 7.18

 − 21.53

 − 71.77

 

1.99

0

 − 60.99

 

 − 7.02

 − 35.1

 − 70.2

 

1.78

0

 − 60.37

 

 − 6.21

 − 46.6

 − 62.13

 

0.96

0

 − 56.08

 

 − 6.17

 − 61.71

 − 61.71

27.61[33]

  
 

 − 37.34

 − 37.34

 − 149.35

 

0

0

 − 27.61

 

 − 47

 − 56.4

 − 188.01

 

2.55

0

0

 

 − 46.82

 − 93.64

 − 187.28

 

2.28

0

 − 38.45

 

 − 44.04

 − 176.17

 − 176.17

 

1.99

0

 − 43.56

     

1.76

0

 − 42.67

     

1.48

0

 − 47.08

     

1.23

0

 − 38.29

Appendix 2 The strength of different high performance concrete (HPC) under different stress states

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

60.16

0

0

–60.16

44.13

0

0

–44.13

[85,86,87]

5.08

0

0

[94]

1.1

–2.21

–22.68

 

2.2

0

–43.92

 

1.06

–5.38

–21.89

 

3.23

0

–32.26

 

1.01

–10.33

–20.65

 

4.28

0

–17.11

 

0.97

–14.70

–19.59

 

4.73

0

–9.45

 

0.88

–17.74

–17.74

 

4.86

0

–6.48

 

1.46

–1.46

–15.14

 

2.23

–44.64

–44.64

 

1.41

–3.53

–14.17

 

3.02

–30.18

–30.18

 

1.37

–6.88

–13.77

 

3.76

–15.05

–15.05

 

1.28

–9.66

–12.93

 

4.11

–11.73

–11.73

 

1.15

–11.47

–11.47

 

4.19

–8.37

–8.37

 

1.41

–0.71

–7.10

 

4.22

–5.63

–5.63

 

1.59

–1.32

–5.34

 

4.23

–4.23

–4.23

 

2.03

–2.03

–4.10

 

0

–66.78

–66.78

 

2.82

–2.82

–3.75

 

–14.36

–38.78

–143.63

 

2.91

–2.91

–2.91

 

–15.34

–64.43

–153.4

 

3.27

0

0

 

–15.77

–82.03

–157.74

    
 

–15.25

–117.45

–152.53

66.43

0

0

–66.43

 

–13.16

–131.64

–131.64

[94]

1.33

–2.66

–29.43

 

0

–13.52

–67.58

 

1.33

–6.51

–27.24

 

0

–20.99

–69.97

 

1.26

–12.49

–26.31

 

0

–30.33

–75.83

 

1.13

–17.21

–22.92

 

0

–36.93

–73.85

 

1.06

–21.79

–21.79

 

0

–51.28

–68.37

 

1.86

–1.86

–18.40

     

1.73

–4.32

–17.21

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

46.09

–5.07

–20.28

–102.78

 

1.59

–8.10

–16.14

[47]

–5.07

–63.60

–106.47

 

1.53

–11.36

–15.15

 

–4.61

–88.49

–93.1

 

1.46

–14.42

–14.42

 

–14.29

–29.04

–144.72

 

2.26

–2.26

–11.23

 

–16.59

–100.02

–166.85

 

2.52

–2.52

–8.37

 

–13.37

–129.51

–136.43

 

2.79

–2.79

–5.51

 

–30.42

–41.02

–204.64

 

3.12

–3.12

–4.12

 

–34.57

–139.19

–231.83

 

3.19

–3.19

–3.19

 

–27.65

–176.99

–186.2

 

4.45

0

0

     

0

–7.91

–79.52

72.73

–7.27

–28.36

–144.01

 

0

–21.59

–86.29

[47]

–8

–100.37

–167.28

 

0

–44.84

–89.75

 

–7.27

–141.82

–149.1

 

0

–66.03

–88.09

 

–20.36

–40.73

–203.64

 

0

–80.51

–80.51

 

–22.55

–134.55

–224.74

 

1.46

0

–33.15

 

–20.36

–192.73

–202.92

 

1.86

0

–21.32

 

–40

–53.09

–266.19

 

2.39

0

–10.89

 

–40

–161.46

–268.37

 

2.99

0

–6.71

 

–35.64

–226.92

–238.55

 

3.72

0

–4.25

     

4.45

1.13

0

83.44

–8.34

–33.38

–167.71

 

5.18

2.59

0

[47]

–8.34

–102.63

–171.89

 

4.85

3.65

0

 

–7.51

–148.52

–156.87

 

5.05

5.05

0

 

–22.53

–45.89

–228.63

    
 

–23.36

–141.01

–235.3

90.64

0

0

–90.64

 

–20.86

–201.09

–211.94

[49, 94]

1.45

–2.99

–29.55

 

–44.22

–58.41

–292.87

 

1.36

–6.89

–27.46

 

–42.55

–268.68

–282.86

 

1.27

–13.05

–26.10

     

1.18

–18.04

–24.02

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

61.17

0

0

–61.17

 

1.09

–22.30

–22.30

[47]

0

–3.67

–69.73

 

1.99

–1.99

–20.03

 

0

–16.52

–78.30

 

1.9

–4.80

–19.03

 

0

–34.26

–81.97

 

1.81

–9.15

–18.40

 

0

–53.22

–85.64

 

1.81

–13.32

–17.77

 

0

–70.35

–84.41

 

1.72

–17.22

–17.22

 

0

–76.46

–77.07

 

2.72

–2.72

–13.69

     

3.17

–3.17

–10.70

72.44

0

0

–72.44

 

3.44

–3.44

–6.89

[47]

0

–4.35

–90.55

 

3.72

–3.72

–4.89

 

0

–18.83

–94.90

 

3.9

–3.90

–3.90

 

0

–38.39

–96.35

 

5.17

0

0

 

0

–55.78

–93.45

    
 

0

–68.09

–85.48

47.07

0

–5.79

–58.04

 

0

–76.79

–81.13

[46]

0

–15.72

–62.84

     

0

–32.81

–65.62

94.2

0

0

–94.20

 

0

–47.68

–63.54

[47]

0

–5.65

–105.50

 

0

–57.10

–57.10

 

0

–23.55

–113.04

 

1.18

0

–26.50

 

0

–49.93

–119.63

 

1.6

0

–18.36

 

0

–71.59

–113.98

 

2.12

0

–9.65

 

0

–93.26

–112.10

 

2.59

0

–5.93

 

0

–102.68

–103.62

 

3.06

0

–3.48

     

3.58

0.89

0

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

60.15

4.27

0

0

 

3.67

1.84

0

[47]

2.29

0

–4.81

 

3.44

2.59

0

 

2.41

0

–12.03

 

3.58

3.58

0

 

1.86

0

–18.65

 

0

0

–47.07

 

1.44

0

–28.87

 

3.53

0

0

 

1.02

0

–40.90

    
 

0

0

–60.15

87.96

0

–10.20

–102.39

    

[46]

0

–27.80

–111.27

69.17

4.91

0

0

 

0

–57.88

–115.67

[47]

2.97

0

–3.46

 

0

–85.15

–113.56

 

2.56

0

–4.84

 

0

–104.23

–104.23

 

2.77

0

–13.83

 

1.58

0

–36.77

 

2.21

0

–21.44

 

2.02

0

–22.78

 

1.8

0

–35.97

 

2.55

0

–11.61

 

1.11

0

–45.65

 

3.43

0

–7.83

 

0

0

–69.17

 

4.4

0

–5.10

     

5.19

0

0

87.44

5.16

0

0

 

5.45

1.32

0

[47]

4.63

0

–6.12

 

5.19

2.64

0

 

3.24

0

–6.12

 

5.1

3.87

0

 

2.89

0

–13.99

 

5.28

5.28

0

 

2.62

0

–26.23

 

0

0

–87.96

 

1.66

0

–33.23

    
 

1.22

0

–49.84

    
 

0

0

–87.44

    

Appendix 3 The strength of normal–strength concrete(NSC) at different temperatures[63]

T/℃

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

T/℃

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

200 ℃

0

0

–32.60

400 ℃

0

0

–23.80

 

–12.85

–32.01

–126.31

 

–11.58

–29.31

–114.37

 

–13.65

–68.22

–135.42

 

–12.15

–60.43

–120.56

 

–12.16

–90.25

–119.30

 

–11.17

–83.48

–110.35

 

–9.53

–94.28

–95.67

 

–8.92

–87.56

–88.42

 

0

–22.40

–44.80

 

0

–7.93

–32.70

 

0

–31.73

–42.30

 

0

–17.30

–34.60

 

0

–38.73

–39.50

 

0

–25.05

–33.40

 

1.24

0

–12.30

 

0

–29.70

–29.70

 

1.62

0

–8.79

 

0.81

0

–8.10

 

1.78

0

–7.12

 

0.98

0

–5.21

 

2.7

0

0

 

1.16

0

–4.25

 

0

–10.30

–41.20

 

1.42

0

0

300 ℃

0

0

–30.05

500 ℃

0

0

–19.50

 

–12.24

–31.05

–123.32

 

–11.03

–27.55

–107.81

 

–13.35

–66.08

–130.41

 

–11.75

–59.36

–116.35

 

–11.62

–87.21

–115.38

 

–10.73

–80.21

–106.40

 

–9.41

–93.52

–92.12

 

–8.59

–86.31

–85.52

 

0

–9.63

–38.50

 

0

–6.00

–24.00

 

0

–20.75

–41.50

 

0

–13.75

–27.50

 

0

–29.70

–39.60

 

0

–20.25

–27.00

 

0

–35.20

–35.20

 

0

–25.20

–25.20

 

1.13

0

–11.30

 

0.57

9

–5.85

 

1.48

0

–6.85

 

0.74

0

–3.84

 

1.61

0

–6.02

 

0.81

0

–3.25

 

2.01

0

0

 

1.2

0

0

Appendix 4 The strength of high performance concrete (HPC) at different temperatures[77,78,87]

T/

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

T/

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

200 ℃

0

0

–63.96

400 ℃

–11.38

–11.38

–113.84

 

4.81

0

0

 

–13.68

–36.95

–136.83

 

2.07

0

–41.33

 

–14.57

–61.18

–145.66

 

2.98

0

–29.75

 

–14.81

–77.02

–148.12

 

3.7

0

–14.81

 

–14.13

–108.76

–141.25

 

4.27

0

–8.54

 

–12.24

–122.36

–122.36

 

4.57

0

–6.09

    
 

1.94

–38.71

–38.71

500 ℃

0

0

–35.72

 

2.75

–27.52

–27.52

 

1.82

0

0

 

3.53

–14.12

–14.12

 

0.72

0

–14.30

 

3.55

–10.15

–10.15

 

1.05

0

–10.49

 

3.98

–7.96

–7.96

 

1.26

0

–5.04

 

3.94

–5.25

–5.25

 

1.33

0

–2.65

 

4.19

–4.19

–4.19

 

1.02

0

–1.36

 

0

–67.48

–67.48

 

0.66

–13.11

–13.11

 

–12.10

–12.10

–121.00

 

0.9

–9.04

–9.04

 

0

–14.42

–72.10

 

1.06

–4.22

–4.22

 

0

–20.69

–68.98

 

1.17

–3.34

–3.34

 

0

–29.06

–72.65

 

1.43

–2.86

–2.86

 

0

–36.80

–73.59

 

1.49

–1.98

–1.98

 

0

–53.22

–70.96

 

1.52

–1.52

–1.52

 

–14.77

–39.89

–147.74

 

0

–8.38

–41.91

 

–15.01

–63.05

–150.11

 

0

–13.72

–45.73

 

–15.53

–80.76

–155.31

 

0

–18.70

–46.74

 

–14.60

–112.42

–146.00

 

0

–25.36

–50.72

 

–12.38

–123.78

–123.78

 

0

–35.78

–47.70

     

0

–42.26

–42.26

T/

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

T/

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

300 ℃

0

0

–61.64

 

–8.87

–8.87

–88.65

 

4.14

0

0

 

–11.03

–29.77

–110.27

 

1.86

0

–37.22

 

–11.31

–47.50

–113.09

 

2.34

0

–23.41

 

–11.88

–61.76

–118.77

 

3.11

0

–12.43

 

–11.60

–89.34

–116.03

 

3.48

0

–6.97

 

–9.62

–96.16

–96.16

 

3.81

0

–5.08

    
 

1.68

–33.51

–33.51

600 ℃

0

0

–24.90

 

2.22

–22.22

–22.22

 

1

0

0

 

2.7

–10.80

–10.80

 

0.39

0

–7.82

 

3.15

–9.00

–9.00

 

0.52

0

–5.20

 

3.42

–6.85

–6.85

 

0.58

0

–2.33

 

3.56

–4.74

–4.74

 

0.99

0

–1.98

 

3.47

–3.47

–3.47

 

0.76

0

–1.01

 

0

–66.69

–66.69

 

0.35

–7.00

–7.00

 

–12.30

–12.30

–123.00

 

0.46

–4.65

–4.65

 

0

–13.03

–65.16

 

0.61

–2.42

–2.42

 

0

–21.21

–70.70

 

0.68

–1.93

–1.93

 

0

–28.54

–71.35

 

0.73

–1.46

–1.46

 

0

–37.59

–75.18

 

0.77

–1.02

–1.02

 

0

–53.08

–70.77

 

0.81

–0.81

–0.81

 

–12.30

–12.30

–123.00

 

0

–5.98

–29.90

 

–13.89

–37.49

–145.85

 

0

–10.15

–33.83

 

–16.05

–67.41

–160.50

 

0

–14.18

–35.46

 

–15.69

–81.60

–156.92

 

0

–18.31

–36.61

 

–15.41

–118.63

–154.07

 

0

–25.39

–33.85

 

–12.82

–128.22

–128.22

 

0

–30.65

–30.65

     

–6.79

–6.79

–67.86

400 ℃

0

0

–49.70

 

–7.74

–20.90

–77.41

 

2.99

0

0

 

–8.99

–37.75

–89.89

 

1.59

0

–31.80

 

–9.05

–47.07

–90.51

 

2.08

0

–20.79

 

–8.77

–67.51

–87.67

 

2.19

0

–8.75

 

–7.55

–75.46

–75.46

 

2.26

0

–4.52

    
 

2.5

0

–3.33

    
 

1.07

–21.48

–21.48

    
 

1.59

–15.91

–15.91

    
 

1.84

–7.34

–7.34

    
 

2.09

–5.98

–5.98

    
 

2.22

–4.44

–4.44

    
 

2.48

–3.30

–3.30

    
 

2.52

–2.52

–2.52

    
 

0

–11.41

–57.04

    
 

0

–17.81

–59.36

    
 

0

–24.67

–61.68

    
 

0

–32.21

–64.41

    
 

0

–42.21

–60.28

    
 

0

–55.88

–55.88

    

Appendix 5 The strength of Lightweight aggregate concrete (LAC) under different stress states

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

Fc/MPa

\(\sigma_{1}\)

\(\sigma_{2}\)

\(\sigma_{3}\)

16.68

0

0

–16.68

 

0.86

0.15

–1.15

[50]

1.75

0

0

 

0.65

0.13

–1.30

 

0

–21.35

–21.35

 

0.41

0.21

–4.10

 

–2.82

–2.82

–28.17

 

0.6

0.6

–0.80

 

–3.15

–7.87

–31.49

 

0.58

0.58

–2.30

 

–3.10

–9.30

–31.00

 

0.71

–2.84

–2.84

 

–3.42

–17.08

–34.15

 

1.97

–2.62

–2.62

 

–3.18

–23.85

–31.80

 

1.72

–1.72

–1.72

 

–3.03

–30.32

–30.32

 

1.75

1.75

1.75

 

–11.30

–13.56

–45.19

 

1.23

0.62

0.62

 

–12.08

–24.16

–48.31

 

1.84

0.46

0.46

 

–10.98

–32.93

–43.90

 

0

–5.25

–20.98

 

–9.77

–39.09

–39.09

 

0

–10.28

–20.56

 

–15.20

–15.20

–50.66

 

0

–15.06

–20.08

 

–15.32

–25.53

–51.05

 

0

–21.35

–21.35

 

–14.21

–47.38

–47.38

    
 

–29.43

–29.43

–58.86

25.5

–5.0

–10.0

–43.1

 

–25.74

–38.60

–51.47

[36]

–5.0

–15.0

–49.5

 

–25.66

–51.31

–51.31

 

–7.5

–10.0

–48.3

 

–41.96

–41.96

–55.94

 

–7.5

–15.0

–56.9

 

–38.03

–50.70

–50.70

 

–10.0

–15.0

–61.2

 

–57.74

–57.74

–57.74

 

–10.0

–17.5

–62.3

 

0.48

0

–9.69

 

–12.5

–15.0

–63.5

 

1.25

0

–4.99

 

–3.0

–10.0

–45.7

 

0.63

0

–6.33

 

–5.0

–10.0

–54.9

 

1.8

0

–3.60

 

–5.0

–15.0

–65.5

 

1.98

0

–2.64

 

–7.5

–15.0

–65.5

 

–10.59

–10.59

–42.34

 

–10.0

–15.0

–75.9

 

0.9

0.09

–0.90

 

–12.5

–15.0

–82.5

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zheng, D., Wu, X. et al. A Review of Three Common Concrete Multiaxial Strength Criteria from 2010 to 2020. Arch Computat Methods Eng 30, 811–829 (2023). https://doi.org/10.1007/s11831-022-09822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-022-09822-8

Navigation